Homogeneous geodesics in homogeneous Finsler spaces

被引:53
作者
Latifi, Dariush [1 ]
机构
[1] Amir Univ Technol, Fac Math & Comp Sci, Tehran 15914, Iran
关键词
homogeneous Finsler spaces; homogeneous geodesics; Randers spaces; S-curvature;
D O I
10.1016/j.geomphys.2006.11.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study homogeneous geodesics in homogeneous Finsler spaces. We first give a simple criterion that characterizes geodesic vectors. We show that the geodesics on a Lie group, relative to a bi-invariant Finster metric, are the cosets of the one-parameter subgroups. The existence of infinitely many homogeneous geodesics on the compact semi-simple Lie group is established. We introduce the notion of a naturally reductive homogeneous Finsler space. As a special case, we study homogeneous geodesics in homogeneous Randers spaces. Finally, we study some curvature properties of homogeneous geodesics. In particular, we prove that the S-curvature vanishes along the homogeneous geodesics. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:1421 / 1433
页数:13
相关论文
共 14 条
[1]  
ARNOLD VI, 1960, ANN I FOURIER GRENOB, V16, P319
[2]  
BAO D, 2000, INTRO RIEMANNFISHER
[3]   The group of isometries of a Finsler space [J].
Deng, SQ ;
Hou, ZX .
PACIFIC JOURNAL OF MATHEMATICS, 2002, 207 (01) :149-155
[4]   Invariant Finsler metrics on homogeneous manifolds [J].
Deng, SQ ;
Hou, ZX .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (34) :8245-8253
[5]  
KAJZER VV, 1990, SOV MATH, V34, P32
[6]  
Kobayashi S., 1969, Foundation of differential geometry, VII
[7]  
Kowalski O, 2001, GEOMETRIAE DEDICATA, V84, P331, DOI 10.1023/A:1010308826374
[8]  
KOWALSKI O, 1991, B UNIONE MAT ITAL, V5B, P189
[9]   On homogeneous Finsler spaces [J].
Latifi, Dariush ;
Razavi, Asadollah .
REPORTS ON MATHEMATICAL PHYSICS, 2006, 57 (03) :357-366
[10]   On an asymmetrical metric in the four-space of general relativity [J].
Randers, G .
PHYSICAL REVIEW, 1941, 59 (02) :195-199