Exact evaluation of the simple cubic lattice Green function for a general lattice point

被引:26
作者
Joyce, GS [1 ]
机构
[1] Univ London, Univ London Kings Coll, Wheatstone Phys Lab, London WC2R 2LS, England
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2002年 / 35卷 / 46期
关键词
D O I
10.1088/0305-4470/35/46/307
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The simple cubic lattice Green function G(l, m, n; w) = 1/pi(3) integral(0)(pi)integral(0)(pi)integral(0)(pi) cosltheta(1) cosmtheta(2) cos ntheta(3)/w-costheta(1)-costheta(2)-costheta(3) dtheta(1) dtheta(2) dtheta(3) is investigated, where {l. m. n) denotes a set of integers and w = u + iv is a complex variable in the (u, v) plane. In particular, it is shown that the modified Green function (G) over bar (l, m, n; w) = (3/w)(l+m+n) wG (l, m, n; w) can be expressed in the xi-parametric form (G) over bar (l, m, n; w) = R-0 (l, m, n; xi) + R-1 (l, m, n; xi) [2/piK(k)](2) +R-2(l,m,n;xi) [2/piK(k)][2/piE(k)] + R-3 (l, m, n; xi)[2/piE(k)](2) where K(k) and E(k) are complete elliptic integrals of the first and second kind respectively, with a modulus k equivalent to k(xi) = 4xi(3/2)/(1 - xi)(3/2)(1 + 3xi)(1/2). The connection between the parameter xi and the variable w is given by xi equivalent to xi(w) = (1/w) [1+root1-(9/w(2))](-1/2) [1 + root1-(1/w(2))](-1/2) and {R-j (l, m, n; xi) : j = 0, 1, 2, 3} is a set of rational functions of xi. It is found that the complete elliptic integral formulae for the Green functions {(G) over bar (n, n, n; w) : n = 1, 2, 3, 4} and ((G) over bar (2n, n, n; w) : n = 1, 2, 3, 4} can be factorized as a product of two linear forms in K(k) and E(k) whose coefficients are rational functions of the parameter xi. On the basis of these explicit results it is conjectured that this factorization propery is valid for all integer values of n.
引用
收藏
页码:9811 / 9828
页数:18
相关论文
共 20 条
[1]   THE SPHERICAL MODEL OF A FERROMAGNET [J].
BERLIN, TH ;
KAC, M .
PHYSICAL REVIEW, 1952, 86 (06) :821-835
[2]  
Borwein J., 1987, PI AGM
[3]   FAST EVALUATION OF THE GAMMA FUNCTION FOR SMALL RATIONAL FRACTIONS USING COMPLETE ELLIPTIC INTEGRALS OF THE 1ST KIND [J].
BORWEIN, JM ;
ZUCKER, IJ .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1992, 12 (04) :519-526
[4]   DIFFERENCE EQUATIONS OF POLYHARMONIC TYPE [J].
DUFFIN, RJ ;
SHELLY, EP .
DUKE MATHEMATICAL JOURNAL, 1958, 25 (02) :209-238
[5]   DISCRETE POTENTIAL THEORY [J].
DUFFIN, RJ .
DUKE MATHEMATICAL JOURNAL, 1953, 20 (02) :233-251
[6]  
Erdelyi A., 1953, Higher Transcendental Functions, California Institute of Technology. Bateman Manuscript Project, V1
[7]   Exact values for the cubic lattice Green functions [J].
Glasser, ML ;
Boersma, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (28) :5017-5023
[8]   LATTICE GREENS FUNCTION FOR SIMPLE CUBIC LATTICE [J].
HORIGUCHI, T .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1971, 30 (05) :1261-+
[9]   NOTE ON LATTICE GREENS FUNCTION FOR SIMPLE CUBIC LATTICE [J].
HORIGUCHI, T ;
MORITA, T .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1975, 8 (11) :L232-L235
[10]   LATTICE GREEN-FUNCTION FOR SIMPLE CUBIC LATTICE [J].
JOYCE, GS .
JOURNAL OF PHYSICS PART A GENERAL, 1972, 5 (08) :L65-+