A construction of Gorenstein rings

被引:128
作者
D'Anna, Marco [1 ]
机构
[1] Univ Catania, Dipartimento Matemat & Informat, I-95125 Catania, Italy
关键词
Gorenstein ring; canonical ideal; algebroid curve;
D O I
10.1016/j.jalgebra.2005.12.023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, starting with a commutative ring R and a proper ideal I subset of R, we construct and study a new ring denoted by R boxed times I. In particular, we prove that if R is a CM local ring, then R boxed times I is Gorenstein if and only if I is a canonical ideal of R and we apply this construction to algebroid curves. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:507 / 519
页数:13
相关论文
共 14 条
[1]   Analytically unramified one-dimensional semilocal rings and their value semigroups [J].
Barucci, V ;
D'Anna, M ;
Fröberg, R .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2000, 147 (03) :215-254
[2]  
Bruns W., 1993, COHEN MACAULAY RINGS
[3]   GORENSTEIN PROPERTY AND SYMMETRY FOR ONE-DIMENSIONAL LOCAL COHEN-MACAULAY RINGS [J].
CAMPILLO, A ;
DELGADO, F ;
KIYEK, K .
MANUSCRIPTA MATHEMATICA, 1994, 83 (3-4) :405-423
[4]   The canonical module of a one-dimensional reduced local ring [J].
DAnna, M .
COMMUNICATIONS IN ALGEBRA, 1997, 25 (09) :2939-2965
[5]  
DANNA M, 2006, AMALGAMATED DUPLICAT
[6]  
Eisenbud D., 1995, COMMUTATIVE ALGEBRA
[7]   COMMUTATIVE EXTENSIONS BY CANONICAL MODULES ARE GORENSTEIN RINGS [J].
FOSSUM, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 40 (02) :395-400
[8]  
Herzog J., 1971, Lecture Notes in Math., V238
[9]   LENGTH CALCULATION AND CANONIC IDEALS IN UNIDIMENSIONAL RINGS [J].
JAGER, J .
ARCHIV DER MATHEMATIK, 1977, 29 (05) :504-512
[10]  
Kaplansky I., 1970, Commutative Rings