Stability of equilibrium points for incommensurate fractional-order nonlinear systems

被引:0
|
作者
Ji Yude [1 ,2 ]
Lu Jiyong [3 ]
Qiu Liqing [2 ]
机构
[1] Hebei Normal Univ, Coll Math & Sci Informat, Shijiazhuang 050024, Hebei, Peoples R China
[2] Hebei Univ Sci & Technol, Coll Sci, Shijiazhuang 050018, Hebei, Peoples R China
[3] Hebei Univ Sci & Technol, Sch Elect Engn, Shijiazhuang 050018, Hebei, Peoples R China
关键词
Incommensurate Fractional-Order System; Asymptotical Stability; Feedback Control; CHAOTIC DYNAMICS; DIFFERENTIAL-EQUATIONS; FINANCIAL-SYSTEM; SYNCHRONIZATION; ROSSLER; LORENZ; DELAY;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, we presents a stability method based on the eigenvalue problem of system matrix for incommensurate fractional-order nonlinear systems. Based on the stability theorems in fractional differential equations, the asymptotical stability of all existing equilibrium points are studied for incommensurate fractional-order non-chaotic Lotka-Volterra predator-prey system and fractional-order chaotic Chen system by feedback control method.
引用
收藏
页码:10453 / 10458
页数:6
相关论文
共 50 条
  • [41] New Synchronization Criterion of Incommensurate Fractional-Order Chaotic Systems
    Chen, Liping
    Xue, Min
    Lopes, Antonio M.
    Wu, Ranchao
    Zhang, Xiaohua
    Chen, Yangquan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2024, 71 (01) : 455 - 459
  • [42] Adaptive Fractional-order Unscented Kalman Filters for Nonlinear Fractional-order Systems
    Yue Miao
    Zhe Gao
    Chuang Yang
    International Journal of Control, Automation and Systems, 2022, 20 : 1283 - 1293
  • [43] A Modified Fractional-Order Unscented Kalman Filter for Nonlinear Fractional-Order Systems
    Ramezani, Abdolrahman
    Safarinejadian, Behrouz
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2018, 37 (09) : 3756 - 3784
  • [44] Adaptive Fractional-order Unscented Kalman Filters for Nonlinear Fractional-order Systems
    Miao, Yue
    Gao, Zhe
    Yang, Chuang
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2022, 20 (04) : 1283 - 1293
  • [45] Fractional-Order Adaptive Fault Estimation for a Class of Nonlinear Fractional-Order Systems
    N'Doye, Ibrahima
    Laleg-Kirati, Taous-Meriem
    2015 AMERICAN CONTROL CONFERENCE (ACC), 2015, : 3804 - 3809
  • [46] Comments on "Stability analysis of Caputo fractional-order nonlinear systems revisited"
    Wu, Cong
    NONLINEAR DYNAMICS, 2021, 104 (01) : 551 - 555
  • [47] A Modified Fractional-Order Unscented Kalman Filter for Nonlinear Fractional-Order Systems
    Abdolrahman Ramezani
    Behrouz Safarinejadian
    Circuits, Systems, and Signal Processing, 2018, 37 : 3756 - 3784
  • [48] Fractional-Order Nonlinear Disturbance Observer Based Control of Fractional-Order Systems
    Munoz-Vazquez, Aldo Jonathan
    Parra-Vega, Vicente
    Sanchez-Orta, Anand
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2018, 13 (07):
  • [49] Stability analysis of random fractional-order nonlinear systems and its application
    Jiao, Ticao
    Zong, Guangdeng
    Zhu, Quanxin
    Wang, Lei
    Sun, Haibin
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2025, 140
  • [50] Stability and Stabilization of a Class of Nonlinear Fractional-Order Systems With Caputo Derivative
    Chen, Liping
    Chai, Yi
    Wu, Ranchao
    Yang, Jing
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2012, 59 (09) : 602 - 606