Stability of equilibrium points for incommensurate fractional-order nonlinear systems

被引:0
作者
Ji Yude [1 ,2 ]
Lu Jiyong [3 ]
Qiu Liqing [2 ]
机构
[1] Hebei Normal Univ, Coll Math & Sci Informat, Shijiazhuang 050024, Hebei, Peoples R China
[2] Hebei Univ Sci & Technol, Coll Sci, Shijiazhuang 050018, Hebei, Peoples R China
[3] Hebei Univ Sci & Technol, Sch Elect Engn, Shijiazhuang 050018, Hebei, Peoples R China
来源
PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016 | 2016年
关键词
Incommensurate Fractional-Order System; Asymptotical Stability; Feedback Control; CHAOTIC DYNAMICS; DIFFERENTIAL-EQUATIONS; FINANCIAL-SYSTEM; SYNCHRONIZATION; ROSSLER; LORENZ; DELAY;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, we presents a stability method based on the eigenvalue problem of system matrix for incommensurate fractional-order nonlinear systems. Based on the stability theorems in fractional differential equations, the asymptotical stability of all existing equilibrium points are studied for incommensurate fractional-order non-chaotic Lotka-Volterra predator-prey system and fractional-order chaotic Chen system by feedback control method.
引用
收藏
页码:10453 / 10458
页数:6
相关论文
共 37 条