Bayesian inference of dynamic cumulative residual entropy from Pareto II distribution with application to COVID-19

被引:14
作者
Ali Ahmadini, H. Abdullah [1 ]
Hassan, S. Amal [2 ]
Zaky, N. Ahmed [2 ,3 ]
Alshqaq, S. Shokrya [1 ]
机构
[1] Jazan Univ, Dept Math, Fac Sci, Jazan, Saudi Arabia
[2] Cairo Univ, Fac Grad Studies Stat Res, Cairo, Egypt
[3] Inst Natl Planning, Cairo, Egypt
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 03期
关键词
Shannon entropy; dynamic cumulative residual entropy; Pareto II distribution; Bayesian estimators; loss functions; LOMAX DISTRIBUTION;
D O I
10.3934/math.2021133
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Dynamic cumulative residual entropy is a recent measure of uncertainty which plays a substantial role in reliability and survival studies. This article comes up with Bayesian estimation of the dynamic cumulative residual entropy of Pareto II distribution in case of non-informative and informative priors. The Bayesian estimator and the corresponding credible interval are obtained under squared error, linear exponential (LINEX) and precautionary loss functions. The Metropolis-Hastings algorithm is employed to generate Markov chain Monte Carlo samples from the posterior distribution. A simulation study is done to implement and compare the accuracy of considered estimates in terms of their relative absolute bias, estimated risk and the width of credible intervals. Regarding the outputs of simulation study, Bayesian estimate of dynamic cumulative residual entropy under LINEX loss function is preferable than the other estimates in most of situations. Further, the estimated risks of dynamic cumulative residual entropy decrease as the value of estimated entropy decreases. Eventually, inferential procedure developed in this paper is illustrated via a real data.
引用
收藏
页码:2196 / 2216
页数:21
相关论文
共 35 条
[1]   Permutation Entropy and Statistical Complexity Analysis of Brazilian Agricultural Commodities [J].
Antunes de Araujo, Fernando Henrique ;
Bejan, Lucian ;
Rosso, Osvaldo A. ;
Stosic, Tatijana .
ENTROPY, 2019, 21 (12)
[2]   On the dynamic cumulative residual entropy [J].
Asadi, Majid ;
Zohrevand, Younes .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2007, 137 (06) :1931-1941
[3]  
Atkinson A. B., 1978, Personal Wealth in Britain
[4]   Zubair Lomax Distribution: Properties and Estimation Based on Ranked Set Sampling [J].
Bantan, Rashad ;
Hassan, Amal S. ;
Elsehetry, Mahmoud .
CMC-COMPUTERS MATERIALS & CONTINUA, 2020, 65 (03) :2169-2187
[5]  
Chacko M., 2018, J INDIAN SOC PROB ST, V19, P79, DOI [10.1007/s41096-018-0033-4, DOI 10.1007/S41096-018-0033-4]
[6]   Monte Carlo estimation of Bayesian credible and HPD intervals [J].
Chen, MH ;
Shao, QM .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 1999, 8 (01) :69-92
[7]   Estimating the Entropy of a Weibull Distribution under Generalized Progressive Hybrid Censoring [J].
Cho, Youngseuk ;
Sun, Hokeun ;
Lee, Kyeongjun .
ENTROPY, 2015, 17 (01) :102-122
[8]  
Ebrahimi N., 1996, Indian J. Stat. Ser. A (1961-2002), V58, P48, DOI DOI 10.1007/s11071-011-0281-2
[9]  
EL-MONSEF M. M. E. A., 2020, QUAL RELIAB ENG INT, P1
[10]   The Tale of Two Financial Crises: An Entropic Perspective [J].
Gencay, Ramazan ;
Gradojevic, Nikola .
ENTROPY, 2017, 19 (06)