A central limit theorem for Gibbs measures relative to Brownian motion

被引:18
作者
Betz, V
Spohn, H
机构
[1] GSF Forschungszentrum, Inst Biomath & Biometrie, D-85758 Neuherberg, Germany
[2] Tech Univ Munich, Zentrum Math, D-85747 Garching, Germany
关键词
Stochastic Process; Brownian Motion; Probability Theory; Limit Theorem; Mathematical Biology;
D O I
10.1007/s00440-004-0381-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study a Gibbs measure over Brownian motion with a pair potential which depends only on the increments. Assuming a particular form of this pair potential, we establish that in the infinite volume limit the Gibbs measure can be viewed as Brownian motion moving in a dynamic random environment. Thereby we are in a position to use the technique of Kipnis and Varadhan and to prove a functional central limit theorem.
引用
收藏
页码:459 / 478
页数:20
相关论文
共 13 条
[1]  
[Anonymous], AMS MATH SURVEYS MON
[2]   Ground state properties of the Nelson Hamiltonian:: A Gibbs measure-based approach [J].
Betz, V ;
Hiroshima, F ;
Lörinczi, J ;
Minlos, RA ;
Spohn, H .
REVIEWS IN MATHEMATICAL PHYSICS, 2002, 14 (02) :173-198
[3]  
BETZ V, 2002, THESIS TU MUNCHEN
[4]  
Brascamp H. J., 1975, P 40 SESS INT STAT I, V9, P1
[5]   ANALYTICITY OF CORRELATION-FUNCTIONS IN ONE-DIMENSIONAL CLASSICAL SYSTEMS WITH SLOWLY DECREASING POTENTIALS [J].
DOBRUSHIN, RL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1973, 32 (04) :269-289
[6]  
DOBRUSHIN RL, 1973, MATH USSR SB, V23, P13
[7]  
Ethier S.N., 1986, MARKOV PROCESSES CHA, DOI 10.1002/9780470316658
[8]   EXISTENCE OF DRESSED ONE ELECTRON STATES IN A CLASS OF PERSISTENT MODELS [J].
FROHLICH, J .
FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 1974, 22 (03) :159-198
[9]  
HOLLEY R, 1978, RIMS KYOTO PUBLICATI, V14, P741
[10]   CENTRAL-LIMIT-THEOREM FOR ADDITIVE-FUNCTIONALS OF REVERSIBLE MARKOV-PROCESSES AND APPLICATIONS TO SIMPLE EXCLUSIONS [J].
KIPNIS, C ;
VARADHAN, SRS .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 104 (01) :1-19