EMBEDDING THE BRAID GROUP IN MAPPING CLASS GROUPS

被引:13
作者
Szepietowski, Blazej [1 ]
机构
[1] Univ Gdansk, Inst Math, PL-80952 Gdansk, Poland
关键词
Mapping class group; braid group; non-geometric embedding; GEOMETRIC SUBGROUPS; HOMEOMORPHISMS; SURFACES;
D O I
10.5565/PUBLMAT_54210_04
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Motivated by a question of B. Wajnryb we construct embeddings of the braid group in mapping class groups of surfaces, which are not geometric in the sense that the images of standard generators are not Dehm twists. Our construction uses non-orientable surfaces and the fact that the mapping class group of such a surface embeds via lifting of homeomorphisms in the mapping class group of its orientable double cover.
引用
收藏
页码:359 / 368
页数:10
相关论文
共 12 条
[1]   Actions of the Braid Group, and New Algebraic Proofs of Results of Dehornoy and Larue [J].
Bacardit, Lluis ;
Dicks, Warren .
GROUPS COMPLEXITY CRYPTOLOGY, 2009, 1 (01) :77-129
[2]  
Birman J. S., 1974, BRAIDS LINKS MAPPING
[3]   LIFTING AND PROJECTING HOMEOMORPHISMS [J].
BIRMAN, JS ;
HILDEN, HM .
ARCHIV DER MATHEMATIK, 1972, 23 (04) :428-&
[4]   ISOTOPIES OF HOMEOMORPHISMS OF RIEMANN SURFACES [J].
BIRMAN, JS ;
HILDEN, HM .
ANNALS OF MATHEMATICS, 1973, 97 (03) :424-439
[5]  
BIRMAN JS, 1972, PROC CAMB PHILOS S-M, V71, P437
[6]   On injective homomorphisms between Teichmuller modular groups I [J].
Ivanov, NV ;
McCarthy, JD .
INVENTIONES MATHEMATICAE, 1999, 135 (02) :425-486
[7]  
Korkmaz M, 2002, GEOMETRIAE DEDICATA, V89, P109
[8]  
LICKORISH WBR, 1963, P CAMB PHILOS SOC, V59, P307
[9]  
Paris L, 2000, J REINE ANGEW MATH, V521, P47
[10]   Commensurability of geometric subgroups of mapping class groups [J].
Stukow, Michal .
GEOMETRIAE DEDICATA, 2009, 143 (01) :117-142