Four-Dimensional Compact Manifolds with Nonnegative Biorthogonal Curvature

被引:9
作者
Costa, Ezio [1 ]
Ribeiro, Ernani, Jr. [2 ]
机构
[1] Univ Fed Bahia UFBA, Dept Matemat, BR-40170110 Salvador, BA, Brazil
[2] Univ Fed Ceara, Dept Matemat, BR-60455760 Fortaleza, Ceara, Brazil
关键词
4-MANIFOLDS; TOPOLOGY; METRICS;
D O I
10.1307/mmj/1417799224
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The goal of this article is to study the pinching problem proposed by S.-T. Yau in 1990 replacing sectional curvature by a weaker condition on biorthogonal curvature: Moreover, we classify four-dimensional compact oriented Riemannian manifolds with nonnegative biorthogonal curvature. In particular, we obtain a partial answer to the Yau conjecture on pinching theorem for four-dimensional compact manifolds.
引用
收藏
页码:747 / 761
页数:15
相关论文
共 27 条
[1]  
Besse A. L., 2007, EINSTEIN MANIFOLDS
[2]  
Chen BL, 2012, J DIFFER GEOM, V91, P41
[3]   RIEMANNIAN METRICS WITH HARMONIC CURVATURE ON 2-SPHERE BUNDLES OVER COMPACT SURFACES [J].
DERDZINSKI, A .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1988, 116 (02) :133-156
[4]  
DERDZINSKI A, 1983, COMPOS MATH, V49, P405
[5]  
DeTurck D. M., 1989, Forum Math., V1, P377, DOI DOI 10.1515/FORM.1989.1.377
[6]  
DONALDSON SK, 1983, J DIFFER GEOM, V18, P279
[7]   THE TOPOLOGY OF 4-DIMENSIONAL MANIFOLDS [J].
FREEDMAN, MH .
JOURNAL OF DIFFERENTIAL GEOMETRY, 1982, 17 (03) :357-453
[8]  
Gu JR, 2012, J DIFFER GEOM, V92, P507
[9]   Four-manifolds with δW+=0 and Einstein constants of the sphere [J].
Gursky, MJ .
MATHEMATISCHE ANNALEN, 2000, 318 (03) :417-431
[10]   Self-dual manifolds with positive Ricci curvature [J].
LeBrun, C ;
Nayatani, S ;
Nitta, T .
MATHEMATISCHE ZEITSCHRIFT, 1997, 224 (01) :49-63