Restricted Testing for Positive Operators

被引:1
作者
Hytonen, Tuomas [1 ]
Li, Kangwei [2 ,3 ]
Sawyer, Eric [4 ]
机构
[1] Univ Helsinki, Dept Math & Stat, Pietari Kalmin Katu 5,POB 68, Helsinki 00014, Finland
[2] Tianjin Univ, Ctr Appl Math, Weijin Rd 92, Tianjin 300072, Peoples R China
[3] Basque Ctr Appl Math, BCAM, Mazarredo 14, Bilbao Basque Country 48009, Spain
[4] McMaster Univ, Dept Math & Stat, 1280 Main St West, Hamilton, ON L8S 4K1, Canada
基金
芬兰科学院;
关键词
Two weight T(1) theorems; Positive operators; Restricted testing conditions; REAL VARIABLE CHARACTERIZATION; WEIGHT NORM INEQUALITIES; 2-WEIGHT INEQUALITY; HILBERT TRANSFORM; THEOREM;
D O I
10.1007/s12220-021-00675-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that for certain positive operators T, such as the Hardy-Littlewood maximal function and fractional integrals, there is a constant D > 1, depending only on the dimension n, such that the two weight norm inequality integral(Rn) T (f sigma)(2) d omega <= C integral(Rn) f(2)d sigma holds for all f >= 0 if and only if the (fractional) A(2) condition holds, and the restricted testing condition integral(Q) T (1 Q(sigma))(2) d omega <= C vertical bar Q vertical bar(sigma) holds for all cubes Q satisfying vertical bar 2Q|(sigma) = D vertical bar Q vertical bar(sigma). If T is linear, we require as well that the dual restricted testing condition integral(Q) T* (1(Q)holds for all cubes Q satisfying vertical bar 2Q vertical bar(omega) <= D vertical bar Q vertical bar(omega).omega)(2) d sigma <= C vertical bar Q vertical bar(omega).
引用
收藏
页码:11139 / 11164
页数:26
相关论文
共 25 条
[1]   Two weight inequalities for positive operators: doubling cubes [J].
Chen, Wei ;
Lacey, Michael .
REVISTA MATEMATICA IBEROAMERICANA, 2020, 36 (07) :2209-2216
[2]  
COIFMAN RR, 1989, J AM MATH SOC, V2, P553
[3]   A BOUNDEDNESS CRITERION FOR GENERALIZED CALDERON-ZYGMUND OPERATORS [J].
DAVID, G ;
JOURNE, JL .
ANNALS OF MATHEMATICS, 1984, 120 (02) :371-397
[4]  
David G., 1985, REV MAT IBEROAM, V1, P1
[5]   SOME MAXIMAL INEQUALITIES [J].
FEFFERMAN, C ;
STEIN, EM .
AMERICAN JOURNAL OF MATHEMATICS, 1971, 93 (01) :107-+
[6]   BMO FROM DYADIC BMO [J].
GARNETT, JB ;
JONES, PW .
PACIFIC JOURNAL OF MATHEMATICS, 1982, 99 (02) :351-371
[7]   Sharp weighted estimates for dyadic shifts and the A2 conjecture [J].
Hytonen, Tuomas ;
Perez, Carlos ;
Treil, Sergei ;
Volberg, Alexander .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2014, 687 :43-86
[8]   The two-weight inequality for the Hilbert transform with general measures [J].
Hytonen, Tuomas P. .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2018, 117 :483-526
[9]   TWO WEIGHT NORM INEQUALITIES FOR THE g FUNCTION [J].
Lacey, Michael T. ;
Li, Kangwei .
MATHEMATICAL RESEARCH LETTERS, 2014, 21 (03) :521-536
[10]   TWO-WEIGHT INEQUALITY FOR THE HILBERT TRANSFORM: A REAL VARIABLE CHARACTERIZATION, II [J].
Lacey, Michael T. .
DUKE MATHEMATICAL JOURNAL, 2014, 163 (15) :2821-2840