Resolution enhancement for inverse synthetic aperture radar images using a deep residual network

被引:14
作者
Gao, Xunzhang [1 ]
Qin, Dan [1 ]
Gao, Jingkun [1 ]
机构
[1] Natl Univ Def Technol, Coll Elect Sci, Deya Rd 109, Changsha, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
deep learning; deep residual network; ISAR image; resolution enhancement;
D O I
10.1002/mop.32186
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A framework for inverse synthetic aperture radar (ISAR) image resolution enhancement using a deep residual network is proposed. Our framework directly learns an end-to-end mapping in the form of a deep residual network (ResNet) between the input low-resolution (LR) images and the output high-resolution (HR) images with respect to the point spread function (PSF). In our network, residual blocks without batch normalization (BN) layers are applied to retain ISAR image contrast, and parametric rectified linear unit (PReLU) which can adaptively learn the negative coefficients is used as the activation function. The complex-valued ISAR imagery is divided into two real-valued channels to preserve phase information implicitly. Experimental results show that the proposed method can obtain higher quality HR images compared with traditional sparsity-driven methods while freeing itself from a prior model for radar echoes and a complicated parameter estimation process.
引用
收藏
页码:1588 / 1593
页数:6
相关论文
共 15 条
[1]  
Borison S. L., 1992, Lincoln Laboratory Journal, V5, P441
[2]  
Castleman K. R., 1996, Digital image processing
[3]   SAR imaging via modern 2-D spectral estimation methods [J].
DeGraaf, SR .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1998, 7 (05) :729-761
[4]   Deep Hyperspectral Image Sharpening [J].
Dian, Renwei ;
Li, Shutao ;
Guo, Anjing ;
Fang, Leyuan .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (11) :5345-5355
[5]   Image Super-Resolution Using Deep Convolutional Networks [J].
Dong, Chao ;
Loy, Chen Change ;
He, Kaiming ;
Tang, Xiaoou .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (02) :295-307
[6]   Enhanced Radar Imaging Using a Complex-Valued Convolutional Neural Network [J].
Gao, Jingkun ;
Deng, Bin ;
Qin, Yuliang ;
Wang, Hongqiang ;
Li, Xiang .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (01) :35-39
[7]   Fourier-Sparsity Integrated Method for Complex Target ISAR Imagery [J].
Gao, Xunzhang ;
Liu, Zhen ;
Chen, Haowen ;
Li, Xiang .
SENSORS, 2015, 15 (02) :2723-2736
[8]   ISAR Image Resolution Enhancement: Compressive Sensing Versus State-of-the-Art Super-Resolution Techniques [J].
Giusti, Elisa ;
Cataldo, Davide ;
Bacci, Alessio ;
Tomei, Sonia ;
Martorella, Marco .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2018, 54 (04) :1983-1997
[9]  
Kim J, 2016, PROC CVPR IEEE, P1637, DOI [10.1109/CVPR.2016.181, 10.1109/CVPR.2016.182]
[10]   Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network [J].
Ledig, Christian ;
Theis, Lucas ;
Huszar, Ferenc ;
Caballero, Jose ;
Cunningham, Andrew ;
Acosta, Alejandro ;
Aitken, Andrew ;
Tejani, Alykhan ;
Totz, Johannes ;
Wang, Zehan ;
Shi, Wenzhe .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :105-114