Optimizing Nanohydroxyapatite Nanocomposites for Bone Tissue Engineering

被引:86
|
作者
Lowe, Baboucarr [1 ]
Hardy, John G. [2 ,3 ]
Walsh, Laurence J. [1 ]
机构
[1] Univ Queensland, Sch Dent, Brisbane, Qld 4006, Australia
[2] Univ Lancaster, Dept Chem, Lancaster LA1 4YB, England
[3] Univ Lancaster, Mat Sci Inst, Lancaster LA1 4YB, England
来源
ACS OMEGA | 2020年 / 5卷 / 01期
关键词
HYDROXYAPATITE-FUCOIDAN NANOCOMPOSITES; NANO-HYDROXYAPATITE; IN-VITRO; BIOMEDICAL APPLICATIONS; SCAFFOLDS; REGENERATION; HYDROGELS; BIOCOMPATIBILITY; NANOTECHNOLOGY; NANOMATERIALS;
D O I
10.1021/acsomega.9b02917
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Bone tissue engineering involves the combined use of materials with functional properties to regenerate bone. Nanohydroxyapatite (nHA) can influence the behavior of cells. The functional and structural properties of nHA can be controlled during nanoparticle synthesis. This review defines the relationship between the attributes of nHA nanoparticles and their biological effects, focusing on biocompatibility, surface-area-to-volume ratio, bonding chemistry, and substrate functionality. The paper explores how these aspects have been applied in the development of scaffolds for the repair of damaged bone or regeneration of missing bone.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 50 条
  • [41] Preparation of Chitosan-based nanocomposites and biomedical investigations in bone tissue engineering
    Molaei, Arman
    Yousefpour, Mardali
    INTERNATIONAL JOURNAL OF POLYMERIC MATERIALS AND POLYMERIC BIOMATERIALS, 2019, 68 (12) : 701 - 713
  • [42] Dual delivery of bone morphogenetic protein-2 and basic fibroblast growth factor from nanohydroxyapatite/collagen for bone tissue engineering
    Hu, Yuqian
    Zheng, Linlin
    Zhang, Jinhui
    Lin, Lijuan
    Shen, Yue
    Zhang, Xiaoyan
    Wu, Buling
    APPLIED BIOLOGICAL CHEMISTRY, 2019, 62 (01)
  • [43] Recent progress in alginate-based nanocomposites for bone tissue engineering applications
    Lekhavadhani, Sundaravadhanan
    Babu, Sushma
    Shanmugavadivu, Abinaya
    Selvamurugan, Nagarajan
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2025, 250
  • [44] Alginate-nanohydroxyapatite hydrogel system: Optimizing the formulation for enhanced bone regeneration
    Barros, J.
    Ferraz, M. P.
    Azeredo, J.
    Fernandes, M. H.
    Gomes, P. S.
    Monteiro, F. J.
    MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2019, 105
  • [45] Chitosan-hydroxyapatite macroporous matrix for bone tissue engineering
    Zo, Sun Mi
    Singh, Deepti
    Kumar, Ashok
    Cho, Yong Woo
    Oh, Tae Hwan
    Han, Sung Soo
    CURRENT SCIENCE, 2012, 103 (12): : 1438 - 1446
  • [46] In situ strategy for bone repair by facilitated endogenous tissue engineering
    Chen, Jingdi
    Zhang, Yujue
    Pan, Panpan
    Fan, Tiantang
    Chen, Mingmao
    Zhang, Qiqing
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2015, 135 : 581 - 587
  • [47] Evaluation of Alginate and Hyaluronic Acid for Their Use in Bone Tissue Engineering
    Rubert, M.
    Alonso-Sande, M.
    Monjo, M.
    Ramis, J. M.
    BIOINTERPHASES, 2012, 7 (1-4) : 1 - 11
  • [48] A novel Chilean salmon fish backbone-based nanoHydroxyApatite functional biomaterial for potential use in bone tissue engineering
    Munoz, F.
    Haidar, Z. S.
    Puigdollers, A.
    Guerra, I.
    Padilla, M. Cristina
    Ortega, N.
    Garcia, M. J.
    FRONTIERS IN MEDICINE, 2024, 11
  • [49] Macroporous alginate foams crosslinked with strontium for bone tissue engineering
    Catanzano, Ovidio
    Soriente, Alessandra
    La Gatta, Annalisa
    Cammarota, Marcella
    Ricci, Giulia
    Fasolino, Ines
    Schiraldi, Chiara
    Ambrosio, Luigi
    Malinconico, Mario
    Laurienzo, Paola
    Raucci, Maria Grazia
    d'Ayala, Giovanna Gomez
    CARBOHYDRATE POLYMERS, 2018, 202 : 72 - 83
  • [50] Graphene-Based Nanocomposites for Neural Tissue Engineering
    Bei, Ho Pan
    Yang, Yuhe
    Zhang, Qiang
    Tian, Yu
    Luo, Xiaoming
    Yang, Mo
    Zhao, Xin
    MOLECULES, 2019, 24 (04):