Optimizing Nanohydroxyapatite Nanocomposites for Bone Tissue Engineering

被引:94
作者
Lowe, Baboucarr [1 ]
Hardy, John G. [2 ,3 ]
Walsh, Laurence J. [1 ]
机构
[1] Univ Queensland, Sch Dent, Brisbane, Qld 4006, Australia
[2] Univ Lancaster, Dept Chem, Lancaster LA1 4YB, England
[3] Univ Lancaster, Mat Sci Inst, Lancaster LA1 4YB, England
关键词
HYDROXYAPATITE-FUCOIDAN NANOCOMPOSITES; NANO-HYDROXYAPATITE; IN-VITRO; BIOMEDICAL APPLICATIONS; SCAFFOLDS; REGENERATION; HYDROGELS; BIOCOMPATIBILITY; NANOTECHNOLOGY; NANOMATERIALS;
D O I
10.1021/acsomega.9b02917
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Bone tissue engineering involves the combined use of materials with functional properties to regenerate bone. Nanohydroxyapatite (nHA) can influence the behavior of cells. The functional and structural properties of nHA can be controlled during nanoparticle synthesis. This review defines the relationship between the attributes of nHA nanoparticles and their biological effects, focusing on biocompatibility, surface-area-to-volume ratio, bonding chemistry, and substrate functionality. The paper explores how these aspects have been applied in the development of scaffolds for the repair of damaged bone or regeneration of missing bone.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 50 条
[1]   Bioinspired Composite Matrix Containing Hydroxyapatite-Silica Core-Shell Nanorods for Bone Tissue Engineering [J].
Anitha, A. ;
Menon, Deepthy ;
Sivanarayanan, T. B. ;
Koyakutty, Manzoor ;
Mohan, Chandini C. ;
Nair, Shantikumar V. ;
Nair, Manitha B. .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (32) :26707-26718
[2]   Injectable Chitin-Poly(ε-caprolactone)/Nanohydroxyapatite Composite Microgels Prepared by Simple Regeneration Technique for Bone Tissue Engineering [J].
Kumar, R. Arun ;
Sivashanmugam, A. ;
Deepthi, S. ;
Iseki, Sachiko ;
Chennazhi, K. P. ;
Nair, Shantikumar V. ;
Jayakumar, R. .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (18) :9399-9409
[3]   Thermoresponsive Hydrogels and Their Biomedical Applications: Special Insight into Their Applications in Textile Based Transdermal Therapy [J].
Chatterjee, Sudipta ;
Hui, Patrick Chi-leung ;
Kan, Chi-wai .
POLYMERS, 2018, 10 (05)
[4]   Nanostructured Biomaterials for Tissue Engineered Bone Tissue Reconstruction [J].
Chiara, Gardin ;
Letizia, Ferroni ;
Lorenzo, Favero ;
Edoardo, Stellini ;
Diego, Stomaci ;
Stefano, Sivolella ;
Eriberto, Bressan ;
Barbara, Zavan .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2012, 13 (01) :737-757
[5]   HIP-FRACTURES IN THE ELDERLY - A WORLDWIDE PROJECTION [J].
COOPER, C ;
CAMPION, G ;
MELTON, LJ .
OSTEOPOROSIS INTERNATIONAL, 1992, 2 (06) :285-289
[6]   Clay: New Opportunities for Tissue Regeneration and Biomaterial Design [J].
Dawson, Jonathan I. ;
Oreffo, Richard O. C. .
ADVANCED MATERIALS, 2013, 25 (30) :4069-4086
[7]   Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering [J].
Duan, Bin ;
Wang, Min ;
Zhou, Wen You ;
Cheung, Wai Lam ;
Li, Zhao Yang ;
Lu, William W. .
ACTA BIOMATERIALIA, 2010, 6 (12) :4495-4505
[8]   Recent advances in smart hydrogels for biomedical applications: From self-assembly to functional approaches [J].
Ferreira, N. N. ;
Ferreira, L. M. B. ;
Cardoso, V. M. O. ;
Boni, F. I. ;
Souza, A. L. R. ;
Gremiao, M. P. D. .
EUROPEAN POLYMER JOURNAL, 2018, 99 :117-133
[9]  
Sossa PAF, 2018, MATERIA-BRAZIL, V23, DOI [10.1590/s1517-707620180004.0551, 10.1590/S1517-707620180004.0551]
[10]  
Ghassemi T, 2018, ARCH BONE JT SURG-AB, V6, P90