Permeability Analysis of Neuroactive Drugs Through a Dynamic Microfluidic In Vitro Blood-Brain Barrier Model

被引:85
作者
Booth, R. [1 ,2 ]
Kim, H. [1 ,2 ]
机构
[1] Univ Utah, Dept Bioengn, Salt Lake City, UT 84112 USA
[2] Univ Utah, Dept Elect & Comp Engn, Salt Lake City, UT 84112 USA
关键词
BBB; Central nervous system; Drug discovery; Endothelial cells; Microsystems; mu BBB; SHEAR-STRESS; ENDOTHELIAL-CELLS; NEUROVASCULAR UNIT; MASS-SPECTROMETRY; LC-MS/MS; VIVO; PENETRATION; PLASMA; BBB; VARENICLINE;
D O I
10.1007/s10439-014-1086-5
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This paper presents the permeability analysis of neuroactive drugs and correlation with in vivo brain/plasma ratios in a dynamic microfluidic blood-brain barrier (BBB) model. Permeability of seven neuroactive drugs (Ethosuximide, Gabapentin, Sertraline, Sunitinib, Traxoprodil, Varenicline, PF-304014) and trans-endothelial electrical resistance (TEER) were quantified in both dynamic (microfluidic) and static (transwell) BBB models, either with brain endothelial cells (bEnd.3) in monoculture, or in co-culture with glial cells (C6). Dynamic cultures were exposed to 15 dyn/cm(2) shear stress to mimic the in vivo environment. Dynamic models resulted in significantly higher average TEER (respective 5.9-fold and 8.9-fold increase for co-culture and monoculture models) and lower drug permeabilities (average respective decrease of 0.050 and 0.052 log(cm/s) for co-culture and monoculture) than static models; and co-culture models demonstrated higher average TEER (respective 90 and 25% increase for static and dynamic models) and lower drug permeability (average respective decrease of 0.063 and 0.061 log(cm/s) for static and dynamic models) than monoculture models. Correlation of the resultant logP (e) values [ranging from -4.06 to -3.63 log(cm/s)] with in vivo brain/plasma ratios (ranging from 0.42 to 26.8) showed highly linear correlation (R (2) > 0.85) for all model conditions, indicating the feasibility of the dynamic microfluidic BBB model for prediction of BBB clearance of pharmaceuticals.
引用
收藏
页码:2379 / 2391
页数:13
相关论文
共 54 条
[1]  
Abbott N Joan, 2004, Drug Discov Today Technol, V1, P407, DOI 10.1016/j.ddtec.2004.11.014
[2]   A modular approach to create a neurovascular unit-on-a-chip [J].
Achyuta, Anil Kumar H. ;
Conway, Amy J. ;
Crouse, Richard B. ;
Bannister, Emilee C. ;
Lee, Robin N. ;
Katnik, Christopher P. ;
Behensky, Adam A. ;
Cuevas, Javier ;
Sundaram, Shivshankar S. .
LAB ON A CHIP, 2013, 13 (04) :542-553
[3]   Estimating the cost of new drug development: Is it really $802 million? [J].
Adams, CP ;
Brantner, VV .
HEALTH AFFAIRS, 2006, 25 (02) :420-428
[4]  
[Anonymous], TABULATIONS BA UNPUB
[5]   Irreversible, direct bonding of nanoporous polymer membranes to PDMS or glass microdevices [J].
Aran, Kiana ;
Sasso, Lawrence A. ;
Kamdar, Neal ;
Zahn, Jeffrey D. .
LAB ON A CHIP, 2010, 10 (05) :548-552
[6]   A multiple-channel, multiple-assay platform for characterization of full-range shear stress effects on vascular endothelial cells [J].
Booth, R. ;
Noh, S. ;
Kim, H. .
LAB ON A CHIP, 2014, 14 (11) :1880-1890
[7]   Characterization of a microfluidic in vitro model of the blood-brain barrier (μBBB) [J].
Booth, Ross ;
Kim, Hanseup .
LAB ON A CHIP, 2012, 12 (10) :1784-1792
[8]   Modelling of the blood-brain barrier in drug discovery and development [J].
Cecchelli, Romeo ;
Berezowski, Vincent ;
Lundquist, Stefan ;
Culot, Maxime ;
Renftel, Mila ;
Dehouck, Marie-Pierre ;
Fenart, Laurence .
NATURE REVIEWS DRUG DISCOVERY, 2007, 6 (08) :650-661
[9]  
Chien S, 2006, BIORHEOLOGY, V43, P95
[10]   Effects of mechanical forces on signal transduction and gene expression in endothelial cells [J].
Chien, S ;
Li, S ;
Shyy, JYJ .
HYPERTENSION, 1998, 31 (01) :162-169