Effect of carbon coating on electrochemical performance of LiFePO4 cathode material for Li-ion battery

被引:55
作者
Raj, Hari [1 ]
Sil, Anjan [1 ]
机构
[1] Indian Inst Technol Roorkee, Dept Met & Mat Engn, Roorkee 247667, Uttarakhand, India
关键词
Sol-gel process; LiFePO4; Carbon coating; Electrochemical performance; Li-ion battery; RECHARGEABLE LITHIUM BATTERIES; POSITIVE-ELECTRODE MATERIALS; SOLID-STATE SYNTHESIS; COATED LIFEPO4; SECONDARY BATTERIES; COMPOSITE CATHODES; PHOSPHO-OLIVINES; CITRIC-ACID; MORPHOLOGY; NANOPARTICLES;
D O I
10.1007/s11581-017-2423-0
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Pristine LiFePO4 (LFP) and carbon-coated LiFePO4 (LFP/C) are synthesized by sol-gel process using citric acid as a carbon precursor. LFP/C is prepared with three different stoichiometric ratios of metal ions and citric acid, namely 1:0.5, 1:1, and 1:2. Prepared LFP and LFP/C powder samples are characterized by X-ray diffractometer, field emission scanning electron microscope, transmission electron microscope, and Raman spectrophotometer. Electrochemical performances of pristine and carbon-coated LFP are investigated by charge-discharge and cyclic voltammetry technique. The results show that LFP/C (1:1) with an optimum thickness of 4.2 nm and higher graphitic carbon coating has the highest discharge capacity of 148.2 mA h g(-1) at 0.1 C rate and 113.1 mA h g(-1) at a high rate of 5 C among all four samples prepared. The sample LFP/C (1:1) shows 96% capacity retention after 300 cycles at 1 C rate. The decrease in discharge capacity (141.4and 105.9 mA h g(-1) at 0.1 and 5 C, respectively) is observed for the sample LFP/C (1:2). Whereas, pristine LFP shows the lowest discharge capacity of 111.1 mA h g(-1) at 0.1 C and capacity was decreased very fast and work only up to 147 cycles. Moreover, cyclic voltammetry has also revealed the lowest polarization of 0.19 V for LFP/C (1:1) and the highest 0.4 V for pristine LFP.
引用
收藏
页码:2543 / 2553
页数:11
相关论文
共 54 条
[1]   Anisotropy of electronic and ionic transport in LiFePO4 single crystals [J].
Amin, Ruhul ;
Balaya, Palani ;
Maier, Joachim .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2007, 10 (01) :A13-A16
[2]  
Armand M., 2003, US Pat, Patent No. [6514640B1, 6514640]
[3]   Synthesis and electrochemical analysis of vapor-deposited carbon-coated LiFePO4 [J].
Belharouak, I ;
Johnson, C ;
Amine, K .
ELECTROCHEMISTRY COMMUNICATIONS, 2005, 7 (10) :983-988
[4]   Effects of particle size and carbon coating on electrochemical properties of LiFePO4/C prepared by hydrothermal method [J].
Chang, Yung-Chang ;
Peng, Chien-Tang ;
Hung, I-Ming .
JOURNAL OF MATERIALS SCIENCE, 2014, 49 (20) :6907-6916
[5]   The effect of carbon coating thickness on the capacity of LiFePO4/C composite cathodes [J].
Cho, Yung-Da ;
Fey, George Ting-Kuo ;
Kao, Hsien-Ming .
JOURNAL OF POWER SOURCES, 2009, 189 (01) :256-262
[6]   Microscale measurements of the electrical conductivity of doped LiFePO4 [J].
Chung, SY ;
Chiang, YM .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (12) :A278-A281
[7]   Electronically conductive phospho-olivines as lithium storage electrodes [J].
Chung, SY ;
Bloking, JT ;
Chiang, YM .
NATURE MATERIALS, 2002, 1 (02) :123-128
[8]   Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model [J].
Delmas, C. ;
Maccario, M. ;
Croguennec, L. ;
Le Cras, F. ;
Weill, F. .
NATURE MATERIALS, 2008, 7 (08) :665-671
[9]   Enhanced electrochemical performance of graphene modified LiFePO4 cathode material for lithium ion batteries [J].
Dhindsa, K. S. ;
Mandal, B. P. ;
Bazzi, K. ;
Lin, M. W. ;
Nazri, M. ;
Nazri, G. A. ;
Naik, V. M. ;
Garg, V. K. ;
Oliveira, A. C. ;
Vaishnava, P. ;
Naik, R. ;
Zhou, Z. X. .
SOLID STATE IONICS, 2013, 253 :94-100
[10]   Impact of carbon structure and morphology on the electrochemical performance of LiFePO4/C composites [J].
Doeff, Marca M. ;
Wilcox, James D. ;
Yu, Rong ;
Aumentado, Albert ;
Marcinek, Marek ;
Kostecki, Robert .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2008, 12 (7-8) :995-1001