Self-consistent model of magnetospheric ring current and propagating electromagnetic ion cyclotron waves: 2. Wave-induced ring current precipitation and thermal electron heating

被引:29
作者
Khazanov, G. V.
Gamayunov, K. V.
Gallagher, D. L.
Kozyra, J. U.
Liemohn, M. W.
机构
[1] NASA, George C Marshall Space Flight Ctr, Natl Space Sci & Technol Ctr, Dept Space Sci, Huntsville, AL 35805 USA
[2] Univ Michigan, Space Phys Res Lab, Ann Arbor, MI 49109 USA
关键词
AURORAL RED ARCS; STORM; PLASMASPHERE; PLASMAPAUSE; FLUXES;
D O I
10.1029/2006JA012033
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
[1] This paper continues presentation and discussion of the results from our new global self-consistent theoretical model of interacting ring current ions and propagating electromagnetic ion cyclotron waves (Khazanov et al., 2006) currently developing in NASA Marshall Space Flight Center. To study the effects of electromagnetic ion cyclotron wave propagation and refraction on the wave induced ring current precipitation and heating of the thermal plasmaspheric electrons, we simulate the May 1998 storm. The main findings after the simulation can be summarized as follows. First, the wave induced ring current precipitation exhibits quite a lot of fine structure and is highly organized by location of the plasmapause gradient. The strongest fluxes of about 4 x 10(6) (cm(2) s sr)(-1) are observed during the main and early recovery phases of the storm. The very interesting and probably more important finding is that in a number of cases the most intense precipitating fluxes are not connected to the most intense waves in simple manner. The characteristics of the wave power spectral density distribution over the wave normal angle are extremely crucial for the effectiveness of the ring current ion scattering. Second, comparison of the global proton precipitating patterns with the results from RAM (Kozyra et al., 1997a) reveals that although we observe a qualitative agreement between the localizations of the wave induced precipitations in the models, there is no quantitative agreement between the magnitudes of the fluxes. The quantitative differences are mainly due to a qualitative difference between the characteristics of the wave power spectral density distributions over the wave normal angle in RAM and in our model. Third, the heat fluxes to plasmaspheric electrons caused by Landau resonate energy absorption from electromagnetic ion cyclotron waves are observed in the postnoon-premidnight MLT sector and can reach the magnitude of 10(11) eV/(cm(2) s). The Coulomb energy degradation of the RC H+ and O+ ions maximizes at about 10(11) eV/(cm(2) s) and typically leads to electron energy deposition rates of about 2 x 10(10) eV/(cm(2) s) which are observed during two periods, 32 - 48 hours and 76 - 86 hours after 1 May, 0000 UT. The theoretically derived spatial structure of the thermal electron heating caused by interaction of the ring current with the plasmasphere is strongly supported by concurrent and conjugate plasma measurements from the plasmasphere, ring current, and topside ionosphere (Gurgiolo et al., 2005). Finally, the wave induced intense electron heating has a structure of the spot-like patches along the most enhanced density gradients in the plasmasphere boundary layer and can be a possible driver of the observed but still not explained small-scale structures of enhanced emissions in the stable auroral red arcs.
引用
收藏
页数:14
相关论文
共 16 条
[1]   TURBULENT LOSS OF RING CURRENT PROTONS [J].
CORNWALL, JM ;
CORONITI, FV ;
THORNE, RM .
JOURNAL OF GEOPHYSICAL RESEARCH, 1970, 75 (25) :4699-+
[2]   UNIFIED THEORY OF SAR ARC FORMATION AT PLASMAPAUSE [J].
CORNWALL, JM ;
CORONITI, FV ;
THORNE, RM .
JOURNAL OF GEOPHYSICAL RESEARCH, 1971, 76 (19) :4428-+
[3]   SOLAR WIND-MAGNETOSPHERE COUPLING DURING INTENSE MAGNETIC STORMS (1978-1979) [J].
GONZALEZ, WD ;
TSURUTANI, BT ;
GONZALEZ, ALC ;
SMITH, EJ ;
TANG, F ;
AKASOFU, SI .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1989, 94 (A7) :8835-8851
[4]   Overlap of the plasmasphere and ring current: Relation to subauroral ionospheric heating [J].
Gurgiolo, C ;
Sandel, BR ;
Perez, JD ;
Mitchell, DG ;
Pollock, CJ ;
Larsen, BA .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2005, 110 (A12)
[5]   Kinetic model of the ring current-atmosphere interactions [J].
Jordanova, VK ;
Kozyra, JU ;
Nagy, AF ;
Khazanov, GV .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1997, 102 (A7) :14279-14291
[6]   Modeling ring current proton precipitation by electromagnetic ion cyclotron waves during the May 14-16, 1997, storm [J].
Jordanova, VK ;
Farrugia, CJ ;
Thorne, RM ;
Khazanov, GV ;
Reeves, GD ;
Thomsen, MF .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2001, 106 (A1) :7-22
[7]   LIMIT ON STABLY TRAPPED PARTICLE FLUXES [J].
KENNEL, CF ;
PETSCHEK, HE .
JOURNAL OF GEOPHYSICAL RESEARCH, 1966, 71 (01) :1-+
[8]   Self-consistent model of magnetospheric ring current and propagating electromagnetic ion cyclotron waves: Waves in multi-ion magnetosphere [J].
Khazanov, G. V. ;
Gamayunov, K. V. ;
Gallagher, D. L. ;
Kozyra, J. U. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2006, 111 (A10)
[9]   Self-consistent model of magnetospheric ring current and electromagnetic ion cyclotron waves: The 2-7 May 1998 storm [J].
Khazanov, GV ;
Gamayunov, KV ;
Jordanova, VK .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2003, 108 (A12)
[10]   A self-consistent model of the interacting ring current ions and electromagnetic ion cyclotron waves, initial results: Waves and precipitating fluxes [J].
Khazanov, GV ;
Gamayunov, KV ;
Jordanova, VK ;
Krivorutsky, EN .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2002, 107 (A6)