Singular limit problem of the Camassa-Holm type equation

被引:19
作者
Hwang, Seok [1 ]
机构
[1] LaGrange Coll, Dept Math, La Grange, GA 30240 USA
关键词
shallow water equation; conservation laws; singular limit; kinetic formulation; averaging lemmas; SHALLOW-WATER EQUATION; GLOBAL WEAK SOLUTIONS; KORTEWEG-DE-VRIES; CONSERVATION-LAWS; HYPERELASTIC-ROD; WELL-POSEDNESS; WAVE-EQUATION; UNIQUENESS; BREAKING;
D O I
10.1016/j.jde.2006.12.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a shallow water equation of Camassa-Holm type, containing nonlinear dispersive effects as well as fourth order dissipative effects. We prove the strong convergence and establish the condition under which, as diffusion and dispersion parameters tend to zero, smooth solutions of the shallow water equation converge to the entropy solution of a scalar conservation law using methodology developed by Hwang and Tzavaras [S. Hwang, A.E. Tzavaras, Kinetic decomposition of approximate solutions to conservation laws: Applications to relaxation and diffusion-dispersion approximations, Comm. Partial Differential Equations 27 (2002) 1229-1254]. The proof relies on the kinetic formulation of conservation laws and the averaging lemma. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:74 / 84
页数:11
相关论文
共 33 条
[1]   Acoustic scattering and the extended Korteweg-de Vries hierarchy [J].
Beals, R ;
Sattinger, DH ;
Szmigielski, J .
ADVANCES IN MATHEMATICS, 1998, 140 (02) :190-206
[2]  
Bouchut F., 2000, SER APPL MATH, V4
[3]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[4]   A singular limit problem for conservation laws related to the Camassa-Holm shallow water equation [J].
Coclite, Giuseppe Maria ;
Hvistendahl Karlsen, Kenneth .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2006, 31 (08) :1253-1272
[5]   Global weak solutions to a generalized hyperelastic-rod wave equation [J].
Coclite, GM ;
Holden, H ;
Karlsen, KH .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 37 (04) :1044-1069
[6]  
Coclite GM, 2005, DISCRETE CONT DYN-A, V13, P659
[7]   Wave breaking for nonlinear nonlocal shallow water equations [J].
Constantin, A ;
Escher, J .
ACTA MATHEMATICA, 1998, 181 (02) :229-243
[8]  
Constantin A, 1999, COMMUN PUR APPL MATH, V52, P949, DOI 10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO
[9]  
2-D
[10]   Global weak solutions for a shallow water equation [J].
Constantin, A ;
Molinet, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 211 (01) :45-61