Ellipsoidal constrained state estimation in presence of bounded disturbances

被引:0
作者
Becis-Aubry, Yasmina [1 ]
机构
[1] Univ Orleans, Lab PRISME EA 4229, INSA CVL, 63 Av Lattre Tassigny, F-18020 Bourges, France
来源
2021 EUROPEAN CONTROL CONFERENCE (ECC) | 2021年
关键词
IDENTIFICATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This contribution proposes a recursive, computationally efficient, ready-to-use, online method for the ellipsoidal state characterization for linear discrete-time models with additive unknown disturbances vectors (bounded by known possibly degenerate zonotopes) corrupting both the state difference equation and the sporadic measurement vectors (expressed as linear inequality and equality constraints on the state vector). The algorithm is decomposed into time updating and observation updating steps. In the latter, a suitable switching estimation gain is designed in such a way as to ensure the input-to-state stability of the estimation error.
引用
收藏
页码:555 / 560
页数:6
相关论文
共 22 条
[1]   On Kalman filtering with linear state equality constraints [J].
Andersson, Leif Erik ;
Imsland, Lars ;
Brekke, Edmund Forland ;
Scibilia, Francesco .
AUTOMATICA, 2019, 101 :467-470
[2]   State estimation in the presence of bounded disturbances [J].
Becis-Aubry, Y. ;
Boutayeb, A. ;
Darouach, M. .
AUTOMATICA, 2008, 44 (07) :1867-1873
[3]  
Becis-Aubry Y., 2020, ELLIPSOIDAL CONSTRAI
[4]  
Chernousko F. L., 1994, State estimation for dynamic systems
[5]   Ellipsoidal state estimation for dynamical systems [J].
Chernousko, FL .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 63 (5-7) :872-879
[6]  
CHERNOUSKO FL, 1999, CISM COUR L, P127
[7]   Zonotopes and Kalman observers: Gain optimality under distinct uncertainty paradigms and robust convergence [J].
Combastel, Christophe .
AUTOMATICA, 2015, 55 :265-273
[8]   The Role of Pseudo Measurements in Equality-Constrained State Estimation [J].
Duan, Zhansheng ;
Li, X. Rong .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2013, 49 (03) :1654-1666
[9]   Multi-input multi-output ellipsoidal state bounding [J].
Durieu, C ;
Walter, É ;
Polyak, B .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2001, 111 (02) :273-303
[10]   ON THE VALUE OF INFORMATION IN SYSTEM-IDENTIFICATION - BOUNDED NOISE CASE [J].
FOGEL, E ;
HUANG, YF .
AUTOMATICA, 1982, 18 (02) :229-238