Variable Selection for Fixed Effects Varying Coefficient Models

被引:14
作者
Li, Gao Rong [1 ]
Lian, Heng [2 ]
Lai, Peng [3 ]
Peng, Heng [4 ]
机构
[1] Beijing Univ Technol, Coll Appl Sci, Beijing Ctr Sci & Engn Comp, Beijing 100124, Peoples R China
[2] Univ New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[3] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Jiangsu, Peoples R China
[4] Hong Kong Baptist Univ, Dept Math, Hong Kong, Hong Kong, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Varying coefficient model; fixed effect; variable selection; basis function; PANEL-DATA MODELS; NONCONCAVE PENALIZED LIKELIHOOD; LONGITUDINAL DATA; NONPARAMETRIC-ESTIMATION; EMPIRICAL LIKELIHOOD; SPLINE ESTIMATION; DIVERGING NUMBER; ADDITIVE-MODELS; REGRESSION; PARAMETERS;
D O I
10.1007/s10114-015-3159-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the problem of variable selection for the fixed effects varying coefficient models. A variable selection procedure is developed using basis function approximations and group nonconcave penalized functions, and the fixed effects are removed using the proper weight matrices. The proposed procedure simultaneously removes the fixed individual effects, selects the significant variables and estimates the nonzero coefficient functions. With appropriate selection of the tuning parameters, an asymptotic theory for the resulting estimates is established under suitable conditions. Simulation studies are carried out to assess the performance of our proposed method, and a real data set is analyzed for further illustration.
引用
收藏
页码:91 / 110
页数:20
相关论文
共 50 条
[31]   Recognition and variable selection in sparse spatial panel data models with fixed effects [J].
Liu, Xuan ;
Chen, Jianbao .
BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2023, 37 (04) :735-755
[32]   Variable selection for high-dimensional varying coefficient partially linear models via nonconcave penalty [J].
Hong, Zhaoping ;
Hu, Yuao ;
Lian, Heng .
METRIKA, 2013, 76 (07) :887-908
[33]   Spline estimator for simultaneous variable selection and constant coefficient identification in high-dimensional generalized varying-coefficient models [J].
Lian, Heng ;
Meng, Jie ;
Zhao, Kaifeng .
JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 141 :81-103
[34]   Parametric component detection and variable selection in varying-coefficient partially linear models [J].
Wang, Dewei ;
Kulasekera, K. B. .
JOURNAL OF MULTIVARIATE ANALYSIS, 2012, 112 :117-129
[35]   Forward Variable Selection for Sparse Ultra-High Dimensional Varying Coefficient Models [J].
Cheng, Ming-Yen ;
Honda, Toshio ;
Zhang, Jin-Ting .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2016, 111 (515) :1209-1221
[36]   A new variable selection approach for varying coefficient models [J].
Ma, Xue-Jun ;
Zhang, Jing-Xiao .
METRIKA, 2016, 79 (01) :59-72
[37]   Variable selection for varying coefficient models with measurement errors [J].
Peixin Zhao ;
Liugen Xue .
Metrika, 2011, 74 :231-245
[38]   A UNIFIED VARIABLE SELECTION APPROACH FOR VARYING COEFFICIENT MODELS [J].
Tang, Yanlin ;
Wang, Huixia Judy ;
Zhu, Zhongyi ;
Song, Xinyuan .
STATISTICA SINICA, 2012, 22 (02) :601-628
[39]   Structural identification and variable selection in high-dimensional varying-coefficient models [J].
Chen, Yuping ;
Bai, Yang ;
Fung, Wingkam .
JOURNAL OF NONPARAMETRIC STATISTICS, 2017, 29 (02) :258-279
[40]   A new variable selection approach for varying coefficient models [J].
Xue-Jun Ma ;
Jing-Xiao Zhang .
Metrika, 2016, 79 :59-72