A Comparison for Dimensionality Reduction Methods of Single-Cell RNA-seq Data

被引:67
|
作者
Xiang, Ruizhi [1 ]
Wang, Wencan [2 ,3 ]
Yang, Lei [1 ]
Wang, Shiyuan [1 ]
Xu, Chaohan [1 ]
Chen, Xiaowen [1 ]
机构
[1] Harbin Med Univ, Coll Bioinformat Sci & Technol, Harbin, Peoples R China
[2] Wenzhou Med Univ, Sch Optometry & Ophthalmol, Wenzhou, Peoples R China
[3] Wenzhou Med Univ, Eye Hosp, Wenzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
single-cell RNA-seq; dimension reduction; benchmark; sequences analysis; deep learning; GENE-EXPRESSION;
D O I
10.3389/fgene.2021.646936
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Single-cell RNA sequencing (scRNA-seq) is a high-throughput sequencing technology performed at the level of an individual cell, which can have a potential to understand cellular heterogeneity. However, scRNA-seq data are high-dimensional, noisy, and sparse data. Dimension reduction is an important step in downstream analysis of scRNA-seq. Therefore, several dimension reduction methods have been developed. We developed a strategy to evaluate the stability, accuracy, and computing cost of 10 dimensionality reduction methods using 30 simulation datasets and five real datasets. Additionally, we investigated the sensitivity of all the methods to hyperparameter tuning and gave users appropriate suggestions. We found that t-distributed stochastic neighbor embedding (t-SNE) yielded the best overall performance with the highest accuracy and computing cost. Meanwhile, uniform manifold approximation and projection (UMAP) exhibited the highest stability, as well as moderate accuracy and the second highest computing cost. UMAP well preserves the original cohesion and separation of cell populations. In addition, it is worth noting that users need to set the hyperparameters according to the specific situation before using the dimensionality reduction methods based on non-linear model and neural network.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Challenges in unsupervised clustering of single-cell RNA-seq data
    Kiselev, Vladimir Yu
    Andrews, Tallulah S.
    Hemberg, Martin
    NATURE REVIEWS GENETICS, 2019, 20 (05) : 273 - 282
  • [42] Testing for Phylogenetic Signal in Single-Cell RNA-Seq Data
    Moravec, Jiri C.
    Lanfear, Robert
    Spector, David L.
    Diermeier, Sarah D.
    Gavryushkin, Alex
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2023, 30 (04) : 518 - 537
  • [43] Locality Sensitive Imputation for Single-Cell RNA-Seq Data
    Moussa, Marmar
    Mandoiu, Ion I.
    BIOINFORMATICS RESEARCH AND APPLICATIONS, ISBRA 2018, 2018, 10847 : 347 - 360
  • [44] Supervised Adversarial Alignment of Single-Cell RNA-seq Data
    Ge, Songwei
    Wang, Haohan
    Alavi, Amir
    Xing, Eric
    Bar-Joseph, Ziv
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2021, 28 (05) : 501 - 513
  • [45] Phylogenetic inference from single-cell RNA-seq data
    Xuan Liu
    Jason I. Griffiths
    Isaac Bishara
    Jiayi Liu
    Andrea H. Bild
    Jeffrey T. Chang
    Scientific Reports, 13
  • [46] Phylogenetic inference from single-cell RNA-seq data
    Liu, Xuan
    Griffiths, Jason I.
    Bishara, Isaac
    Liu, Jiayi
    Bild, Andrea H.
    Chang, Jeffrey T.
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [47] PsiNorm: a scalable normalization for single-cell RNA-seq data
    Borella, Matteo
    Martello, Graziano
    Risso, Davide
    Romualdi, Chiara
    BIOINFORMATICS, 2022, 38 (01) : 164 - 172
  • [48] Deep Learning for Clustering Single-cell RNA-seq Data
    Zhu, Yuan
    Bai, Litai
    Ning, Zilin
    Fu, Wenfei
    Liu, Jie
    Jiang, Linfeng
    Fei, Shihuang
    Gong, Shiyun
    Lu, Lulu
    Deng, Minghua
    Yi, Ming
    CURRENT BIOINFORMATICS, 2024, 19 (03) : 193 - 210
  • [49] Crafted experiments to evaluate feature selection methods for single-cell RNA-seq data
    Liu, Siyao
    Corcoran, David L.
    Garcia-Recio, Susana
    Marron, James S.
    Perou, Charles M.
    NAR GENOMICS AND BIOINFORMATICS, 2025, 7 (01)
  • [50] SCell: integrated analysis of single-cell RNA-seq data
    Diaz, Aaron
    Liu, Siyuan J.
    Sandoval, Carmen
    Pollen, Alex
    Nowakowski, Tom J.
    Lim, Daniel A.
    Kriegstein, Arnold
    BIOINFORMATICS, 2016, 32 (14) : 2219 - 2220