A Comparison for Dimensionality Reduction Methods of Single-Cell RNA-seq Data

被引:67
|
作者
Xiang, Ruizhi [1 ]
Wang, Wencan [2 ,3 ]
Yang, Lei [1 ]
Wang, Shiyuan [1 ]
Xu, Chaohan [1 ]
Chen, Xiaowen [1 ]
机构
[1] Harbin Med Univ, Coll Bioinformat Sci & Technol, Harbin, Peoples R China
[2] Wenzhou Med Univ, Sch Optometry & Ophthalmol, Wenzhou, Peoples R China
[3] Wenzhou Med Univ, Eye Hosp, Wenzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
single-cell RNA-seq; dimension reduction; benchmark; sequences analysis; deep learning; GENE-EXPRESSION;
D O I
10.3389/fgene.2021.646936
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Single-cell RNA sequencing (scRNA-seq) is a high-throughput sequencing technology performed at the level of an individual cell, which can have a potential to understand cellular heterogeneity. However, scRNA-seq data are high-dimensional, noisy, and sparse data. Dimension reduction is an important step in downstream analysis of scRNA-seq. Therefore, several dimension reduction methods have been developed. We developed a strategy to evaluate the stability, accuracy, and computing cost of 10 dimensionality reduction methods using 30 simulation datasets and five real datasets. Additionally, we investigated the sensitivity of all the methods to hyperparameter tuning and gave users appropriate suggestions. We found that t-distributed stochastic neighbor embedding (t-SNE) yielded the best overall performance with the highest accuracy and computing cost. Meanwhile, uniform manifold approximation and projection (UMAP) exhibited the highest stability, as well as moderate accuracy and the second highest computing cost. UMAP well preserves the original cohesion and separation of cell populations. In addition, it is worth noting that users need to set the hyperparameters according to the specific situation before using the dimensionality reduction methods based on non-linear model and neural network.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] DRscDB: A single-cell RNA-seq resource for data mining and data comparison across species
    Hu Y.
    Tattikota S.G.
    Liu Y.
    Comjean A.
    Gao Y.
    Forman C.
    Kim G.
    Rodiger J.
    Papatheodorou I.
    dos Santos G.
    Mohr S.E.
    Perrimon N.
    Computational and Structural Biotechnology Journal, 2021, 19 : 2018 - 2026
  • [22] Consensus clustering of single-cell RNA-seq data by enhancing network affinity
    Cui, Yaxuan
    Zhang, Shaoqiang
    Liang, Ying
    Wang, Xiangyun
    Ferraro, Thomas N.
    Chen, Yong
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (06)
  • [23] Benchmarking algorithms for pathway activity transformation of single-cell RNA-seq data
    Zhang, Yaru
    Ma, Yunlong
    Huang, Yukuan
    Zhang, Yan
    Jiang, Qi
    Zhou, Meng
    Su, Jianzhong
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2020, 18 : 2953 - 2961
  • [24] Integration of Single-Cell RNA-Seq Datasets: A Review of Computational Methods
    Ryu, Yeonjae
    Han, Geun Hee
    Jung, Eunsoo
    Hwang, Daehee
    MOLECULES AND CELLS, 2023, 46 (02) : 106 - 119
  • [25] Correlation Imputation for Single-Cell RNA-seq
    Gan, Luqin
    Vinci, Giuseppe
    Allen, Genevera I.
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2022, 29 (05) : 465 - 482
  • [26] Feature selection and dimension reduction for single-cell RNA-Seq based on a multinomial model
    Townes, F. William
    Hicks, Stephanie C.
    Aryee, Martin J.
    Irizarry, Rafael A.
    GENOME BIOLOGY, 2019, 20 (01)
  • [27] Bubble: a fast single-cell RNA-seq imputation using an autoencoder constrained by bulk RNA-seq data
    Chen, Siqi
    Yan, Xuhua
    Zheng, Ruiqing
    Li, Min
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (01)
  • [28] Systematic comparison of high-throughput single-cell RNA-seq methods for immune cell profiling
    Yamawaki, Tracy M.
    Lu, Daniel R.
    Ellwanger, Daniel C.
    Bhatt, Dev
    Manzanillo, Paolo
    Arias, Vanessa
    Zhou, Hong
    Yoon, Oh Kyu
    Homann, Oliver
    Wang, Songli
    Li, Chi-Ming
    BMC GENOMICS, 2021, 22 (01)
  • [29] Feature selection and dimension reduction for single-cell RNA-Seq based on a multinomial model
    F. William Townes
    Stephanie C. Hicks
    Martin J. Aryee
    Rafael A. Irizarry
    Genome Biology, 20
  • [30] Systematic comparison of high-throughput single-cell RNA-seq methods for immune cell profiling
    Tracy M. Yamawaki
    Daniel R. Lu
    Daniel C. Ellwanger
    Dev Bhatt
    Paolo Manzanillo
    Vanessa Arias
    Hong Zhou
    Oh Kyu Yoon
    Oliver Homann
    Songli Wang
    Chi-Ming Li
    BMC Genomics, 22