On the Absolutely Continuous Spectrum of Generalized Indefinite Strings

被引:6
作者
Eckhardt, Jonathan [1 ]
Kostenko, Aleksey [1 ,2 ]
机构
[1] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[2] Univ Ljubljana, Fac Math & Phys, Jadranska 19, Ljubljana 1000, Slovenia
来源
ANNALES HENRI POINCARE | 2021年 / 22卷 / 11期
关键词
DIMENSIONAL SCHRODINGER-OPERATORS; GLOBAL CONSERVATIVE SOLUTIONS; STURM-LIOUVILLE OPERATORS; CAMASSA-HOLM EQUATION; SCATTERING;
D O I
10.1007/s00023-021-01072-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate absolutely continuous spectrum of generalized indefinite strings. By following an approach of Deift and Killip, we establish stability of the absolutely continuous spectra of two model examples of generalized indefinite strings under rather wide perturbations. In particular, one of these results allows us to prove that the absolutely continuous spectrum of the isospectral problem associated with the conservative Camassa-Holm flow in the dispersive regime is essentially supported on the interval [1/4, infinity).
引用
收藏
页码:3529 / 3564
页数:36
相关论文
共 42 条
[31]   Absolutely continuous spectrum of Dirac operators with square-integrable potentials [J].
Hughes, Daniel ;
Schmidt, Karl Michael .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2014, 144 (03) :533-555
[32]  
Kato Tosio, 1995, CLASSICS MATH, DOI [10.1007/978-3-642-66282-9, DOI 10.1007/978-3-642-66282-9]
[33]  
Killip R, 2002, INT MATH RES NOTICES, V2002, P2029
[34]   Spectral Theory of Semibounded Schrodinger Operators with δ'-Interactions [J].
Kostenko, Aleksey ;
Malamud, Mark .
ANNALES HENRI POINCARE, 2014, 15 (03) :501-541
[35]   The similarity problem for indefinite Sturm-Liouville operators and the HELP inequality [J].
Kostenko, Aleksey .
ADVANCES IN MATHEMATICS, 2013, 246 :368-413
[36]  
Malamud M., 2013, P S PURE MATH, V87, P235
[37]   First KdV integrals and absolutely continuous spectrum for 1-D Schrodinger operator [J].
Molchanov, S ;
Novitskii, M ;
Vainberg, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 216 (01) :195-213
[38]  
Rosenblum M., 1994, TOPICS HARDY CLASSES, DOI DOI 10.1007/978-3-0348-8520-1
[39]  
Rudin W., 1987, Real and complex analysis, V3rd
[40]   On the spectral L2 conjecture, 3/2-Lieb-Thirring inequality and distributional potentials -: art. no. 123505 [J].
Rybkin, A .
JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (12)