An Initialization Scheme for Supervized K-means

被引:0
作者
Lemaire, Vincent [1 ]
Ismaili, Oumaima Alaoui [1 ]
Cornuejols, Antoine [2 ]
机构
[1] Orange Labs, 2 Ave Pierre Marzin, F-22300 Lannion, France
[2] Agro Paris Tech, F-75005 Paris, France
来源
2015 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN) | 2015年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Over the last years, researchers have focused their attention on a new approach, supervised clustering, that combines the main characteristics of both traditional clustering and supervised classification tasks. Motivated by the importance of the initialization in the traditional clustering context, this paper explores to what extent supervised initialization step could help traditional clustering to obtain better performances on supervised clustering tasks. This paper reports experiments which show that the simple proposed approach yields a good solution together with significant reduction of the computational cost.
引用
收藏
页数:8
相关论文
共 37 条
  • [1] Aguilar J. S., 2001, Engineering of Intelligent Systems. 14th International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems, IEA/AIE 2001. Proceedings (Lecture Notes in Artificial Intelligence Vol.2070), P207
  • [2] Adapting k-means for supervised clustering
    Al-Harbi, SH
    Rayward-Smith, VJ
    [J]. APPLIED INTELLIGENCE, 2006, 24 (03) : 219 - 226
  • [3] New methods for the initialisation of clusters
    AlDaoud, MB
    Roberts, SA
    [J]. PATTERN RECOGNITION LETTERS, 1996, 17 (05) : 451 - 455
  • [4] [Anonymous], 2010, Semi-Supervised Learning
  • [5] [Anonymous], 2005, P 22 INT C MACH LEAR, DOI DOI 10.1145/1102351.1102379
  • [6] Arthur D., 2007, P 18 ANN ACM SIAM S, DOI DOI 10.1145/1283383.1283494
  • [7] Asuncion D.N. A., 2007, UCI MACHINE LEARNING
  • [8] Basu S, 2002, MACHINE LEARNING, P19
  • [9] Boullé M, 2005, J MACH LEARN RES, V6, P1431
  • [10] MODL:: A Bayes optimal discretization method for continuous attributes
    Boulle, Marc
    [J]. MACHINE LEARNING, 2006, 65 (01) : 131 - 165