Regulation of mesenchymal stem cell 3D microenvironment: From macro to microfluidic bioreactors

被引:46
作者
Sart, Sebastien [1 ]
Agathos, Spiros N. [2 ]
Li, Yan [3 ]
Ma, Teng [3 ]
机构
[1] Ecole Polytech, CNRS UMR7646, Hydrodynam Lab, Palaiseau, France
[2] Catholic Univ Louvain, Lab Bioengn, Louvain, Belgium
[3] Florida State Univ, FAMU FSU Coll Engn, Dept Chem & Biomed Engn, 2525 Pottsdamer St, Tallahassee, FL 32310 USA
关键词
Bioreactors; Mesenchymal stem cells; Microenvironment; Microfluidics; Three-dimensional cell culture; OSTEOGENIC DIFFERENTIATION; IN-VITRO; SHEAR-STRESS; FLUID-FLOW; EXTRACELLULAR-MATRIX; PERFUSION BIOREACTOR; CULTURE SYSTEM; GROWTH-FACTOR; GENE-EXPRESSION; STROMAL CELLS;
D O I
10.1002/biot.201500191
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Human mesenchymal stem cells (hMSCs) have emerged as an important cell type in cell therapy and tissue engineering. In these applications, maintaining the therapeutic properties of hMSCs requires tight control of the culture environments and the structural cell organizations. Bioreactor systems are essential tools to achieve these goals in the clinical-scale expansion and tissue engineering applications. This review summarizes how different bioreactors provide cues to regulate the structure and the chemico-mechanical microenvironment of hMSCs with a focus on 3D organization. In addition to conventional bioreactors, recent advances in microfluidic bioreactors as a novel approach to better control the hMSC microenvironment are also discussed. These advancements highlight the key role of bioreactor systems in preserving hMSC's functional properties by providing dynamic and temporal regulation of in vitro cellular microenvironment.
引用
收藏
页码:43 / 57
页数:15
相关论文
共 125 条
  • [21] Delaine-Smith Robin M, 2012, Muscles Ligaments Tendons J, V2, P169
  • [22] Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement
    Dominici, M.
    Le Blanc, K.
    Mueller, I.
    Slaper-Cortenbach, I.
    Marini, F. C.
    Krause, D. S.
    Deans, R. J.
    Keating, A.
    Prockop, D. J.
    Horwitz, E. M.
    [J]. CYTOTHERAPY, 2006, 8 (04) : 315 - 317
  • [23] Cyclic strain dominates over microtopography in regulating cytoskeletal and focal adhesion remodeling of human mesenchymal stem cells
    Doroudian, Golnar
    Curtis, Matthew W.
    Gang, Anjulie
    Russell, Brenda
    [J]. BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2013, 430 (03) : 1040 - 1046
  • [24] Bioreactor design for clinical-grade expansion of stem cells
    dos Santos, Francisco F.
    Andrade, Pedro Z.
    da Silva, Claudia Lobato
    Cabral, Joaquim M. S.
    [J]. BIOTECHNOLOGY JOURNAL, 2013, 8 (06) : 644 - 654
  • [25] Microcarrier-based expansion process for hMSCs with high vitality and undifferentiated characteristics
    Elseberg, Christiane L.
    Leber, Jasmin
    Salzig, Denise
    Wallrapp, Christine
    Kassem, Moustapha
    Kraume, Matthias
    Czermak, Peter
    [J]. INTERNATIONAL JOURNAL OF ARTIFICIAL ORGANS, 2012, 35 (02) : 93 - 107
  • [26] Lab-on-a-chip technologies for stem cell analysis
    Ertl, Peter
    Sticker, Drago
    Charwat, Verena
    Kasper, Cornelia
    Lepperdinger, Guenter
    [J]. TRENDS IN BIOTECHNOLOGY, 2014, 32 (05) : 245 - 253
  • [27] A microcarrier-based cultivation system for expansion of primary mesenchymal stem cells
    Frauenschuh, Simone
    Reichmann, Elisabeth
    Ibold, Yvonne
    Goetz, Peter M.
    Sittinger, Michael
    Ringe, Jochen
    [J]. BIOTECHNOLOGY PROGRESS, 2007, 23 (01) : 187 - 193
  • [28] Frith JE, 2010, TISSUE ENG PART C-ME, V16, P735, DOI 10.1089/ten.TEC.2009.0432
  • [29] Fung WT, 2009, LAB CHIP, V9, P2591, DOI [10.1039/b903753e, 10.1039/b903753c]
  • [30] A simple elastic membrane-based microfluidic chip for the proliferation and differentiation of mesenchymal stem cells under tensile stress
    Gao, Xinghua
    Zhang, Xu
    Tong, Huiyu
    Lin, Bingcheng
    Qin, Jianhua
    [J]. ELECTROPHORESIS, 2011, 32 (23) : 3431 - 3436