Maximal functions and potentials in variable exponent Morrey spaces with non-doubling measure

被引:40
作者
Kokilashvili, Vakhtang [1 ,2 ]
Meskhi, Alexander [1 ]
机构
[1] A Razmadze Math Inst, Dept Math Anal, GE-0193 Tbilisi, Georgia
[2] Int Black Sea Univ, Fac Comp Technol, GE-0131 Tbilisi, Georgia
基金
美国国家科学基金会;
关键词
Morrey spaces with variable exponent; fractional integrals; maximal operator; non-doubling measure; boundedness; SUFFICIENT CONDITIONS; GENERALIZED LEBESGUE; SOBOLEV EMBEDDINGS; SINGULAR-OPERATORS; BOUNDEDNESS; CONVOLUTION; INEQUALITIES;
D O I
10.1080/17476930903276068
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The boundedness of modified maximal operators and potentials with variable parameter in variable exponent Morrey spaces with non-doubling measure is established. Moreover, Holder continuity properties for fractional integrals of functions in Morrey spaces with variable exponent defined on non-homogeneous spaces are investigated.
引用
收藏
页码:923 / 936
页数:14
相关论文
共 36 条
[1]  
ADAMS DR, 1975, DUKE MATH J, V42, P765, DOI 10.1215/S0012-7094-75-04265-9
[2]  
Almeida A, 2008, GEORGIAN MATH J, V15, P195
[3]  
Almeida A, 2007, Z ANAL ANWEND, V26, P179
[4]  
[Anonymous], 2004, Real Anal. Exchange
[5]  
[Anonymous], 1979, Math. Notes, DOI DOI 10.1007/BF01159546
[6]  
[Anonymous], 2002, MATH APPL
[7]  
[Anonymous], 1995, GEORGIAN MATH J, DOI DOI 10.1515/GMJ.1995.141
[8]  
[Anonymous], J FUNCT SPACES APPL
[9]  
[Anonymous], 2007, P A RAZMADZE MATH I
[10]   Necessary and sufficient conditions for the boundedness of the Riesz potential in local Morrey-type spaces [J].
Burenkov, V. I. ;
Guliev, V. S. ;
Guliev, G. V. .
DOKLADY MATHEMATICS, 2007, 75 (01) :103-107