Multifunctional Mesoporous Silica Nanoparticles for Cancer Therapy and Imaging

被引:23
作者
Dilnawaz, Fahima [1 ]
机构
[1] Inst Life Sci, Lab Nanomed, Nalco Sq, Bhubaneswar 751023, Odisha, India
关键词
Nanotechnology; mesoporous silica nanoparticles; theranostic; drug delivery; cancer therapy; biodegradability; RESPONSIVE CONTROLLED-RELEASE; UP-CONVERSION NANOPARTICLES; CONTROLLED DRUG-RELEASE; COATED GOLD NANORODS; IN-VITRO; TUMOR MICROENVIRONMENT; HOLLOW SILICA; DELIVERY-SYSTEM; PH; PLATFORM;
D O I
10.2174/0929867325666180501101044
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: Cancer is a widespread disease and has a high mortality rate. Popular conventional treatment encompasses chemotherapy, radiation and surgical resection. However, these treatments impart lots of toxicity problems to the patients mostly due to their non-selectiveness nature, which invokes drug resistances and severe side-effects. Objectives: In this regard, nanotechnology has claimed to be a smart technology that provides the system with the ability to target drugs to the specific sites. With the use of nanotechnology, various nanomaterials that are widely used as a drug delivery vehicle are created for biomedical applications. Amongst variously diversified nanovehicles, mesoporous silica nanoparticles (MSNs) have attracted enormous attention due to their structural characteristics, great surface areas, tunable pore diameters, good thermal and chemical stability, excellent biocompatibility along with ease of surface modification. Furthermore, the drug release from MSNs can be tailored through various stimuli response gatekeeper systems. The ordered structure of MSNs is extremely suitable for loading of the high amount of drug molecules with controlled delivery for targeting the cancer tissues via enhanced permeability and retention effect or further with surface modification, it can also be actively targeted by various ligands. Methods: The review article emphases the common synthetic methods and current advancement of MSNs usages for stimuli response drug delivery, immunotherapy as well as the theranostic ability for cancer. Conclusion: Although MSNs are becoming the promising tool for more efficient and safer cancer therapy, however, additional translational studies are required to explore its multifunctional ability in a clinical setting.
引用
收藏
页码:5745 / 5763
页数:19
相关论文
共 115 条
[1]   PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect [J].
Acharya, Sarbari ;
Sahoo, Sanjeeb K. .
ADVANCED DRUG DELIVERY REVIEWS, 2011, 63 (03) :170-183
[2]   Multifunctional Mesoporous Silica Nanoparticles as a Universal Platform for Drug Delivery [J].
Argyo, Christian ;
Weiss, Veronika ;
Braeuchle, Christoph ;
Bein, Thomas .
CHEMISTRY OF MATERIALS, 2014, 26 (01) :435-451
[3]   Drug targeting and tumor heterogeneity [J].
Bae, You Han .
JOURNAL OF CONTROLLED RELEASE, 2009, 133 (01) :2-3
[4]   Magnetically Triggered Multidrug Release by Hybrid Mesoporous Silica Nanoparticles [J].
Baeza, Alejandro ;
Guisasola, Eduardo ;
Ruiz-Hernandez, Eduardo ;
Vallet-Regi, Maria .
CHEMISTRY OF MATERIALS, 2012, 24 (03) :517-524
[5]   Photocontrolled Nanoparticle Delivery Systems for Biomedical Applications [J].
Bansal, Akshaya ;
Zhang, Yong .
ACCOUNTS OF CHEMICAL RESEARCH, 2014, 47 (10) :3052-3060
[6]   Enzyme-Responsive Intracellular Controlled Release Using Nanometric Silica Mesoporous Supports Capped with "Saccharides" [J].
Bernardos, Andrea ;
Mondragon, Laura ;
Aznar, Elena ;
Marcos, M. Dolores ;
Martinez-Manez, Ramon ;
Sancenon, Felix ;
Soto, Juan ;
Barat, Jose Manuel ;
Perez-Paya, Enrique ;
Guillem, Carmen ;
Amoros, Pedro .
ACS NANO, 2010, 4 (11) :6353-6368
[7]   Active targeting schemes for nanoparticle systems in cancer therapeutics [J].
Byrne, James D. ;
Betancourt, Tania ;
Brannon-Peppas, Lisa .
ADVANCED DRUG DELIVERY REVIEWS, 2008, 60 (15) :1615-1626
[8]   The preparation of highly ordered MCM-41 with extremely low surfactant concentration [J].
Cai, Q ;
Lin, WY ;
Xiao, FS ;
Pang, WQ ;
Chen, XH ;
Zou, BS .
MICROPOROUS AND MESOPOROUS MATERIALS, 1999, 32 (1-2) :1-15
[9]   Upconversion Nanoparticles: Design, Nanochemistry, and Applications in Theranostics [J].
Chen, Guanying ;
Qju, Hailong ;
Prasad, Paras N. ;
Chen, Xiaoyuan .
CHEMICAL REVIEWS, 2014, 114 (10) :5161-5214
[10]   Unique Biological Degradation Behavior of Stober Mesoporous Silica Nanoparticles from Their Interiors to Their Exteriors [J].
Chen, Guotao ;
Teng, Zhaogang ;
Su, Xiaodan ;
Liu, Ying ;
Lu, Guangming .
JOURNAL OF BIOMEDICAL NANOTECHNOLOGY, 2015, 11 (04) :722-729