Analyzing Many-Body Localization with a Quantum Computer

被引:15
作者
Bauer, Bela [1 ]
Nayak, Chetan [1 ,2 ]
机构
[1] Stn Q Microsoft Res, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
关键词
FACTORIZATION; ALGORITHMS; SIMULATION;
D O I
10.1103/PhysRevX.4.041021
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Many-body localization, the persistence against electron-electron interactions of the localization of states with nonzero excitation energy density, poses a challenge to current methods of theoretical and numerical analyses. Numerical simulations have so far been limited to a small number of sites, making it difficult to obtain reliable statements about the thermodynamic limit. In this paper, we explore the ways in which a relatively small quantum computer could be leveraged to study many-body localization. We show that, in addition to studying time evolution, a quantum computer can, in polynomial time, obtain eigenstates at arbitrary energies to sufficient accuracy that localization can be observed. The limitations of quantum measurement, which preclude the possibility of directly obtaining the entanglement entropy, make it difficult to apply some of the definitions of many-body localization used in the recent literature. We discuss alternative tests of localization that can be implemented on a quantum computer.
引用
收藏
页数:11
相关论文
共 51 条
[11]  
[Anonymous], 2002, Classical and quantum computation. Number
[12]   Unbounded Growth of Entanglement in Models of Many-Body Localization [J].
Bardarson, Jens H. ;
Pollmann, Frank ;
Moore, Joel E. .
PHYSICAL REVIEW LETTERS, 2012, 109 (01)
[13]   Metal-insulator transition in a weakly interacting many-electron system with localized single-particle states [J].
Basko, DM ;
Aleiner, IL ;
Altshuler, BL .
ANNALS OF PHYSICS, 2006, 321 (05) :1126-1205
[14]   The ALPS project release 2.0: open source software for strongly correlated systems [J].
Bauer, B. ;
Carr, L. D. ;
Evertz, H. G. ;
Feiguin, A. ;
Freire, J. ;
Fuchs, S. ;
Gamper, L. ;
Gukelberger, J. ;
Gull, E. ;
Guertler, S. ;
Hehn, A. ;
Igarashi, R. ;
Isakov, S. V. ;
Koop, D. ;
Ma, P. N. ;
Mates, P. ;
Matsuo, H. ;
Parcollet, O. ;
Pawlowski, G. ;
Picon, J. D. ;
Pollet, L. ;
Santos, E. ;
Scarola, V. W. ;
Schollwoeck, U. ;
Silva, C. ;
Surer, B. ;
Todo, S. ;
Trebst, S. ;
Troyer, M. ;
Wall, M. L. ;
Werner, P. ;
Wessel, S. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2011,
[15]   Area laws in a many-body localized state and its implications for topological order [J].
Bauer, Bela ;
Nayak, Chetan .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2013,
[16]   Efficient quantum algorithms for simulating sparse Hamiltonians [J].
Berry, Dominic W. ;
Ahokas, Graeme ;
Cleve, Richard ;
Sanders, Barry C. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 270 (02) :359-371
[17]  
Berry DW, 2012, QUANTUM INF COMPUT, V12, P29
[18]   Fermionic quantum computation [J].
Bravyi, SB ;
Kitaev, AY .
ANNALS OF PHYSICS, 2002, 298 (01) :210-226
[19]   Many-body localization and symmetry-protected topological order [J].
Chandran, Anushya ;
Khemani, Vedika ;
Laumann, C. R. ;
Sondhi, S. L. .
PHYSICAL REVIEW B, 2014, 89 (14)
[20]   Universal programmable quantum circuit schemes to emulate an operator [J].
Daskin, Anmer ;
Grama, Ananth ;
Kollias, Giorgos ;
Kais, Sabre .
JOURNAL OF CHEMICAL PHYSICS, 2012, 137 (23)