Streaming operator:: Existence of a Co-semigroup(II)

被引:6
作者
Boulanouar, M [1 ]
机构
[1] Univ Poitiers, Lab Modelisat Mecan & Math Appl, F-86962 Futuroscope, France
来源
TRANSPORT THEORY AND STATISTICAL PHYSICS | 2003年 / 32卷 / 02期
关键词
D O I
10.1081/TT-120019042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the streaming operator in (X, V) subset of R-n x R-n with general boundary conditions defined by means a boundary operator K. Introducing Gamma(+)-regular or Gamma(-)-regular operator K and an equivalent norm, we show the existence of a C-0-semigroup on L-p(X x V) and give an estimation of its norm in the case where parallel toKparallel to 1.
引用
收藏
页码:185 / 197
页数:13
相关论文
共 9 条
  • [1] [Anonymous], 1988, ANAL MATH CALCUL NUM
  • [2] ABSTRACT TIME-DEPENDENT TRANSPORT-EQUATIONS
    BEALS, R
    PROTOPOPESCU, V
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1987, 121 (02) : 370 - 405
  • [3] Borgioli G., 1996, Transport Theory and Statistical Physics, V25, P491, DOI 10.1080/00411459608220716
  • [4] 3D-Streaming operator with multiplying boundary conditions: Semigroup generation properties
    Borgioli, G
    Totaro, S
    [J]. SEMIGROUP FORUM, 1997, 55 (01) : 110 - 117
  • [5] Streaming operator.: 1.: Existence of a C0-semigroup
    Boulanouar, M
    [J]. TRANSPORT THEORY AND STATISTICAL PHYSICS, 2002, 31 (02): : 169 - 176
  • [6] Greenberg W, 1987, BOUNDARY VALUE PROBL, V23
  • [7] Sentis R., 1982, 162 INRIA
  • [8] UKAI S, 1996, STUD MATH APPL, V18, P37
  • [9] Voigt J., 1981, FUNCTIONAL ANAL TREA