Double-constraint flexible tree search-based orthogonal matching pursuit for DOA estimation using dynamic sensor arrays

被引:4
作者
Chen, Hui [1 ]
Wan, Qun [1 ]
Fan, Rong [1 ]
机构
[1] Univ Elect Sci & Technol China, Dept Elect Engn, Chengdu 611731, Peoples R China
基金
中国国家自然科学基金;
关键词
structured sparsity; array orientation diversity; flexible tree search; orthogonal matching pursuit; Direction-of-arrival (DOA) estimation; SIGNAL RECONSTRUCTION;
D O I
10.1080/00207217.2015.1082200
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Greedy algorithms have leveraged sparse signal models for parameter estimation purposes in applications including bearing estimation and direction-of-arrival (DOA) estimation. A dictionary whose elements correspond to observations for a sampling of the angle space is used for sparse approximation of the received signals; the resulting sparse coefficient vector's support identifies the DOA estimates. Increasing the angle space sampling resolution provides better sparse approximations for arbitrary observations, while the resulting high dictionary coherence hampers the performance of standard sparse approximation, preventing accurate DOA estimation. To alleviate this shortcoming, in the each iteration, we use the structured sparsity model that keeps high coherent and close spacing dictionary elements. Besides, the proposed approach allows exploitation of the array orientation diversity (achievable via array dynamics) in the compressive sensing framework to address challenging array signal processing problems such as left-right ambiguity and poor estimation performance. And the simulation results show that our proposed algorithm can offer significantly improved performance in single-snapshot scenario with multiple sources.
引用
收藏
页码:928 / 936
页数:9
相关论文
共 19 条
[1]   Model-Based Compressive Sensing [J].
Baraniuk, Richard G. ;
Cevher, Volkan ;
Duarte, Marco F. ;
Hegde, Chinmay .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (04) :1982-2001
[2]   Spatial Compressive Sensing for Direction-of-Arrival Estimation of Multiple Sources using Dynamic Sensor Arrays [J].
Bilik, I. .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2011, 47 (03) :1754-1769
[3]   Sensitivity to Basis Mismatch in Compressed Sensing [J].
Chi, Yuejie ;
Scharf, Louis L. ;
Pezeshki, Ali ;
Calderbank, A. Robert .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2011, 59 (05) :2182-2195
[4]  
DeVore R. A., 1998, Acta Numerica, V7, P51, DOI 10.1017/S0962492900002816
[5]   DE-NOISING BY SOFT-THRESHOLDING [J].
DONOHO, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (03) :613-627
[6]   Compressed sensing [J].
Donoho, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) :1289-1306
[7]   Spectral compressive sensing [J].
Duarte, Marco F. ;
Baraniuk, Richard G. .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2013, 35 (01) :111-129
[8]   Multiple frequencies estimation from compressive phase-only data: algorithm and application [J].
Fan, Rong ;
Wan, Qun ;
Chen, Hui ;
You, Qing-Shan ;
Wang, Hui .
INTERNATIONAL JOURNAL OF ELECTRONICS, 2013, 100 (11) :1471-1482
[9]   General Deviants: An Analysis of Perturbations in Compressed Sensing [J].
Herman, Matthew A. ;
Strohmer, Thomas .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2010, 4 (02) :342-349
[10]  
Karabulut G., 2005, EURASIP J WIREL COMM, V2, P197