Mechanical characterization of an in vitro device designed to quantitatively injure living brain tissue

被引:63
作者
Morrison, B
Meaney, DF
McIntosh, TK
机构
[1] Univ Penn, Dept Bioengn, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Neurosurg, Philadelphia, PA 19104 USA
关键词
cell culture; mechanical stimulus; stretch injury; dynamic loading;
D O I
10.1114/1.61
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Due to the nonlinear, viscoelastic material properties of brain, its mechanical response is dependent upon its total strain history. Therefore, a low strain rate, large strain will likely produce a tissue injury unique from that due to a high strain rate, moderate strain. Due to a lack of current understanding of specific in vivo physiological injury mechanisms, a priori assumptions cannot be made that a low strain rate injury induced by currently employed in vitro injury devices is representative of clinical, nonimpact, inertial head injuries. in the present study, an in vitro system capable of mechanically injuring cultured tissue at high strain rates was designed and characterized. The design of the device was based upon existing systems in which a clamped membrane, on which cells have been cultured, is deformed. However, the present system incorporates three substantial improvements: (1) noncontact measurement of the membrane deflection during injury; (2) precise and independent control over several characteristics of the deflection; and (3) generation of mechanical insults over a wide range of strains (up to 0.65) and strain rates (up to 15 s(-1)). Such a system will be valuable in the elucidation of the mechanisms of mechanical trauma and determination of injury tolerance criteria on a cellular level utilizing appropriate mechanical injury parameters. (C) 1998 Biomedical Engineering Society.
引用
收藏
页码:381 / 390
页数:10
相关论文
共 39 条
[1]   DIFFUSE AXONAL INJURY DUE TO NONMISSILE HEAD-INJURY IN HUMANS - AN ANALYSIS OF 45 CASES [J].
ADAMS, JH ;
GRAHAM, DI ;
MURRAY, LS ;
SCOTT, G .
ANNALS OF NEUROLOGY, 1982, 12 (06) :557-563
[2]   LARGE ELASTIC DEFORMATIONS OF ISOTROPIC MATERIALS .9. THE DEFORMATION OF THIN SHELLS [J].
ADKINS, JE ;
RIVLIN, RS .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1952, 244 (888) :505-531
[3]  
[Anonymous], INT C BIOM IMP LYON
[4]  
BALENTINE JD, 1988, LAB INVEST, V58, P93
[5]   HIGHLY NON-LINEAR DEFORMATION OF UNIFORMLY-LOADED CIRCULAR PLATES [J].
BRODLAND, GW .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1988, 24 (04) :351-362
[6]   Acute alterations in [Ca2+]i in NG108-15 cells subjected to high strain rate deformation and chemical hypoxia: An in vitro model for neural trauma [J].
Cargill, RS ;
Thibault, LE .
JOURNAL OF NEUROTRAUMA, 1996, 13 (07) :395-407
[7]   ULTRASTRUCTURAL STUDIES OF DIFFUSE AXONAL INJURY IN HUMANS [J].
CHRISTMAN, CW ;
GRADY, MS ;
WALKER, SA ;
HOLLOWAY, KL ;
POVLISHOCK, JT .
JOURNAL OF NEUROTRAUMA, 1994, 11 (02) :173-186
[8]   A NEW MODEL FOR RAPID STRETCH-INDUCED INJURY OF CELLS IN CULTURE - CHARACTERIZATION OF THE MODEL USING ASTROCYTES [J].
ELLIS, EF ;
MCKINNEY, JS ;
WILLOUGHBY, KA ;
LIANG, S ;
POVLISHOCK, JT .
JOURNAL OF NEUROTRAUMA, 1995, 12 (03) :325-339
[9]   MECHANICAL AND ELECTRICAL RESPONSES OF THE SQUID GIANT-AXON TO SIMPLE ELONGATION [J].
GALBRAITH, JA ;
THIBAULT, LE ;
MATTESON, DR .
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 1993, 115 (01) :13-22
[10]   ANIMATE MODELS OF HUMAN HEAD-INJURY [J].
GENNARELLI, TA .
JOURNAL OF NEUROTRAUMA, 1994, 11 (04) :357-368