Prediction of type 2 diabetes mellitus based on nutrition data

被引:7
作者
Katsimpris, Andreas [1 ]
Brahim, Aboulmaouahib [1 ,2 ]
Rathmann, Wolfgang [3 ]
Peters, Anette [4 ]
Strauch, Konstantin [1 ,5 ]
Flaquer, Antonia [1 ,2 ]
机构
[1] Ludwig Maximilians Univ Munchen, Inst Med Informat Biometry & Epidemiol, Chair Genet Epidemiol, Munich, Germany
[2] Ludwig Maximilians Univ Munchen, Inst Med Informat Biometry & Epidemiol IBE, Munich, Germany
[3] German Diabet Ctr, Dept Biometry & Epidemiol, Dusseldorf, Germany
[4] Helmholtz Zentrum Munchen, Inst Epidemiol 2, German Res Ctr Environm Hlth, Munich, Germany
[5] Johannes Gutenberg Univ Mainz, Univ Med Ctr, Inst Med Biostat Epidemiol & Informat IMBEI, Mainz, Germany
关键词
Elastic net regression; Nutrition; Prediction model; Type; 2; diabetes; VARIABLE SELECTION; RISK; DIETARY; MODELS; REGULARIZATION; METAANALYSIS; PREVENTION; REGRESSION; SCORE;
D O I
10.1017/jns.2021.36
中图分类号
R15 [营养卫生、食品卫生]; TS201 [基础科学];
学科分类号
100403 ;
摘要
Numerous predictive models for the risk of type 2 diabetes mellitus (T2DM) exist, but a minority of them has implemented nutrition data so far, even though the significant effect of nutrition on the pathogenesis, prevention and management of T2DM has been established. Thus, in the present study, we aimed to build a predictive model for the risk of T2DM that incorporates nutrition data and calculates its predictive performance. We analysed cross-sectional data from 1591 individuals from the population-based Cooperative Health Research in the Region of Augsburg (KORA) FF4 study (2013-14) and used a bootstrap enhanced elastic net penalised multivariate regression method in order to build our predictive model and select among 193 food intake variables. After selecting the significant predictor variables, we built a logistic regression model with these variables as predictors and T2DM status as the outcome. The values of area under the receiver operating characteristic (ROC) curve, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy of our predictive model were calculated. Eleven out of the 193 food intake variables were selected for inclusion in our model, which yielded a value of area under the ROC curve of 0.79 and a maximum PPV, NPV and accuracy of 0.37, 0.98 and 0.91, respectively. The present results suggest that nutrition data should be implemented in predictive models to predict the risk of T2DM, since they improve their performance and they are easy to assess.
引用
收藏
页数:7
相关论文
共 33 条
[1]   Bootstrap Enhanced Penalized Regression for Variable Selection with Neuroimaging Data [J].
Abram, Samantha V. ;
Helwig, Nathaniel E. ;
Moodie, Craig A. ;
DeYoung, Colin G. ;
MacDonald, Angus W., III ;
Waller, Niels G. .
FRONTIERS IN NEUROSCIENCE, 2016, 10
[2]  
[Anonymous], 2014, MED ABINGDON, DOI [10.1016/j.mpmed.2014.09, DOI 10.1016/J.MPMED.2014.09, 10.1016/j.mpmed.2014.09.007, DOI 10.1016/J.MPMED.2014.09.007]
[3]   Penalized least squares regression methods and applications to neuroimaging [J].
Bunea, Florentina ;
She, Yiyuan ;
Ombao, Hernando ;
Gongvatana, Assawin ;
Devlin, Kate ;
Cohen, Ronald .
NEUROIMAGE, 2011, 55 (04) :1519-1527
[4]   Developing risk prediction models for type 2 diabetes: a systematic review of methodology and reporting [J].
Collins, Gary S. ;
Mallett, Susan ;
Omar, Omar ;
Yu, Ly-Mee .
BMC MEDICINE, 2011, 9
[5]   Diet Behavior Change Techniques in Type 2 Diabetes: A Systematic Review and Meta-analysis [J].
Cradock, Kevin A. ;
OLaighin, Gearoid ;
Finucane, Francis M. ;
McKay, Rhyann ;
Quinlan, Leo R. ;
Ginis, Kathleen A. Martin ;
Gainforth, Heather L. .
DIABETES CARE, 2017, 40 (12) :1800-1810
[6]   Diet-Quality Scores and the Risk of Type 2 Diabetes in Men [J].
De Koning, Lawrence ;
Chiuve, Stephanie E. ;
Fung, Teresa T. ;
Willett, Walter C. ;
Rimm, Eric B. ;
Hu, Frank B. .
DIABETES CARE, 2011, 34 (05) :1150-1156
[7]  
Fraser Lisa-Ann, 2010, Diabetes Care, V33, pe10, DOI 10.2337/dc09-1129
[8]   Development and evaluation of a short 24-h food list as part of a blended dietary assessment strategy in large-scale cohort studies [J].
Freese, J. ;
Feller, S. ;
Harttig, U. ;
Kleiser, C. ;
Linseisen, J. ;
Fischer, B. ;
Leitzmann, M. F. ;
Six-Merker, J. ;
Michels, K. B. ;
Nimptsch, K. ;
Steinbrecher, A. ;
Pischon, T. ;
Heuer, T. ;
Hoffmann, I. ;
Jacobs, G. ;
Boeing, H. ;
Noethlings, U. .
EUROPEAN JOURNAL OF CLINICAL NUTRITION, 2014, 68 (03) :324-329
[9]   Regularization Paths for Generalized Linear Models via Coordinate Descent [J].
Friedman, Jerome ;
Hastie, Trevor ;
Tibshirani, Rob .
JOURNAL OF STATISTICAL SOFTWARE, 2010, 33 (01) :1-22
[10]   Global Diabetes Prevention Interventions: A Systematic Review and Network Meta-analysis of the Real-World Impact on Incidence, Weight, and Glucose [J].
Galaviz, Karla Ivette ;
Weber, Mary Beth ;
Straus, Audrey ;
Haw, Jeehea Sonya ;
Narayan, K. M. Venkat ;
Ali, Mohammed Kumail .
DIABETES CARE, 2018, 41 (07) :1526-1534