Preemptive semi-online scheduling with tightly-grouped processing times

被引:6
作者
He, Y [1 ]
Jiang, YW
机构
[1] Zhejiang Univ, Dept Math, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, State Key Lab CAD & CG, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
semi-online; scheduling; preemption; competitive ratio;
D O I
10.1007/BF02973433
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper investigates a preemptive semi-online scheduling problem on m identical parallel machines where m = 2, 3. It is assumed that all jobs have their processing times in between p and rp (p > 0, r greater than or equal to 1). The goal is to minimize the makespan. Best possible algorithms are designed for any r greater than or equal to 1 when m = 2,3.
引用
收藏
页码:733 / 739
页数:7
相关论文
共 9 条
[1]   An optimal algorithm for preemptive on-line scheduling [J].
Chen, B ;
vanVliet, A ;
Woeginger, GJ .
OPERATIONS RESEARCH LETTERS, 1995, 18 (03) :127-131
[2]   Bin stretching revisited [J].
Epstein, L .
ACTA INFORMATICA, 2003, 39 (02) :97-117
[3]   Optimal preemptive semi-online scheduling to minimize makespan on two related machines [J].
Epstein, L ;
Favrholdt, LM .
OPERATIONS RESEARCH LETTERS, 2002, 30 (04) :269-275
[4]   Optimal preemptive on-line scheduling on uniform processors with non-decreasing speed ratios [J].
Epstein, L .
OPERATIONS RESEARCH LETTERS, 2001, 29 (02) :93-98
[5]   Semi on-line scheduling on two identical machines [J].
He, Y ;
Zhang, G .
COMPUTING, 1999, 62 (03) :179-187
[6]   Some new formulations of smoothness conditions and conformality conditions for bivariate splines [J].
Hong, D ;
Liu, HW .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2000, 40 (01) :117-125
[7]  
HE Y, 2002, SEMIONLINE SCHEDULIN
[8]   SCHEDULING WITH DEADLINES AND LOSS FUNCTIONS [J].
MCNAUGHTON, R .
MANAGEMENT SCIENCE, 1959, 6 (01) :1-12
[9]   Semi-online scheduling with decreasing job sizes [J].
Seiden, S ;
Sgall, J ;
Woeginger, G .
OPERATIONS RESEARCH LETTERS, 2000, 27 (05) :215-221