Decoupling Minimal Surface Metamaterial Properties Through Multi-Material Hyperbolic Tilings

被引:63
作者
Callens, Sebastien J. P. [1 ]
Arns, Christoph H. [2 ]
Kuliesh, Alina [1 ]
Zadpoor, Amir A. [1 ]
机构
[1] Delft Univ Technol, Dept Biomech Engn, Mekelweg 2, NL-2628 CD Delft, Netherlands
[2] Univ New South Wales, Sch Minerals & Energy Resources Engn, Sydney, NSW 2052, Australia
基金
欧洲研究理事会;
关键词
geometries; metamaterial designs; minimal surfaces; multi-material printing; SCAFFOLDS; PERMEABILITY; BIOMATERIALS; COMPOSITES; ELASTICITY; TRANSPORT; STIFFNESS; GEOMETRY; STRENGTH; SYMMETRY;
D O I
10.1002/adfm.202101373
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Rapid advances in additive manufacturing have kindled widespread interest in the rational design of metamaterials with unique properties over the past decade. However, many applications require multi-physics metamaterials, where multiple properties are simultaneously optimized. This is challenging since different properties, such as mechanical and mass transport properties, typically impose competing requirements on the nano-/micro-/ meso-architecture of metamaterials. Here, a parametric metamaterial design strategy that enables independent tuning of the effective permeability and elastic properties is proposed. Hyperbolic tiling theory is applied to devise simple templates, based on which triply periodic minimal surfaces (TPMS) are partitioned into hard and soft regions. Through computational analyses, it is demonstrated how the decoration of hard, soft, and void phases within the TPMS substantially enhances their permeability-elasticity property space and offers high tunability in the elastic properties and anisotropy at constant permeability. Also shown is that this permeability-elasticity balance is well captured using simple scaling laws. The proposed concept is demonstrated through multi-material additive manufacturing of representative specimens. The approach, which is generalizable to other designs, offers a route towards multi-physics metamaterials that need to simultaneously carry a load and enable mass transport, such as load-bearing heat exchangers or architected tissue-substituting meta-biomaterials.
引用
收藏
页数:15
相关论文
共 88 条
[1]   Multifunctional Mechanical Metamaterials Based on Triply Periodic Minimal Surface Lattices [J].
Al-Ketan, Oraib ;
Abu Al-Rub, Rashid K. .
ADVANCED ENGINEERING MATERIALS, 2019, 21 (10)
[2]   Additive manufacturing of architected catalytic ceramic substrates based on triply periodic minimal surfaces [J].
Al-Ketan, Oraib ;
Pelanconi, Marco ;
Ortona, Alberto ;
Abu Al-Rub, Rashid K. .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2019, 102 (10) :6176-6193
[3]   Microarchitected Stretching-Dominated Mechanical Metamaterials with Minimal Surface Topologies [J].
Al-Ketan, Oraib ;
Rezgui, Rachid ;
Rowshan, Reza ;
Du, Huifeng ;
Fang, Nicholas X. ;
Abu Al-Rub, Rashid K. .
ADVANCED ENGINEERING MATERIALS, 2018, 20 (09)
[4]   Nature-Inspired Lightweight Cellular Co-Continuous Composites with Architected Periodic Gyroidal Structures [J].
Al-Ketan, Oraib ;
Soliman, Ahmad ;
AlQubaisi, Ayesha M. ;
Abu Al-Rub, Rashid K. .
ADVANCED ENGINEERING MATERIALS, 2018, 20 (02)
[5]   Virtual permeametry on microtomographic images [J].
Arns, CH ;
Knackstedt, MA ;
Pinczewski, WV ;
Martys, NS .
JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2004, 45 (1-2) :41-46
[6]   The properties of foams and lattices [J].
Ashby, MF .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2006, 364 (1838) :15-30
[7]  
Bauer J, 2016, NAT MATER, V15, P438, DOI [10.1038/NMAT4561, 10.1038/nmat4561]
[8]   Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness [J].
Berger, J. B. ;
Wadley, H. N. G. ;
Mcmeeking, R. M. .
NATURE, 2017, 543 (7646) :533-+
[9]   How Linear Tension Converts to Curvature: Geometric Control of Bone Tissue Growth [J].
Bidan, Cecile M. ;
Kommareddy, Krishna P. ;
Rumpler, Monika ;
Kollmannsberger, Philip ;
Brechet, Yves J. M. ;
Fratzl, Peter ;
Dunlop, John W. C. .
PLOS ONE, 2012, 7 (05)
[10]   Additively manufactured metallic porous biomaterials based on minimal surfaces: A unique combination of topological, mechanical, and mass transport properties [J].
Bobbert, F. S. L. ;
Lietaert, K. ;
Eftekhari, A. A. ;
Pouran, B. ;
Ahmadi, S. M. ;
Weinans, H. ;
Zadpoor, A. A. .
ACTA BIOMATERIALIA, 2017, 53 :572-584