Strong solutions to the Navier-Stokes-Fourier system with slip-inflow boundary conditions

被引:16
作者
Piasecki, Tomasz [1 ]
Pokorny, Milan [2 ]
机构
[1] Univ Warsaw, Inst Appl Math & Mech, PL-02097 Warsaw, Poland
[2] Charles Univ Prague, Fac Math & Phys, Math Inst, Prague 18675 8, Czech Republic
来源
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK | 2014年 / 94卷 / 12期
关键词
Steady Navier-Stokes-Fourier system; inflow boundary conditions; strong solution; small data; COMPRESSIBLE FLUIDS; DIFFERENTIAL-EQUATIONS; WEAK SOLUTIONS; EXISTENCE; DOMAIN; FLOWS; PIPE;
D O I
10.1002/zamm.201300014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a system of partial differential equations describing the steady flow of a compressible heat conducting Newtonian fluid in a three-dimensional channel with inflow and outflow part. We show the existence of a strong solution provided the data are close to a constant, but nontrivial flow with sufficiently large dissipation in the energy equation. (C) 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:1035 / 1057
页数:23
相关论文
共 33 条
[31]  
Temam R., 1977, Theory and Numerical Analysis, Studies in Mathematics and its Applications, V2
[32]   NAVIER-STOKES EQUATIONS FOR COMPRESSIBLE FLUIDS - GLOBAL EXISTENCE AND QUALITATIVE PROPERTIES OF THE SOLUTIONS IN THE GENERAL-CASE [J].
VALLI, A ;
ZAJACZKOWSKI, WM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 103 (02) :259-296
[33]  
Zajaczkowshi W., 1989, DISSERTATIONES MATH, V274, P95