Strong solutions to the Navier-Stokes-Fourier system with slip-inflow boundary conditions

被引:16
作者
Piasecki, Tomasz [1 ]
Pokorny, Milan [2 ]
机构
[1] Univ Warsaw, Inst Appl Math & Mech, PL-02097 Warsaw, Poland
[2] Charles Univ Prague, Fac Math & Phys, Math Inst, Prague 18675 8, Czech Republic
来源
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK | 2014年 / 94卷 / 12期
关键词
Steady Navier-Stokes-Fourier system; inflow boundary conditions; strong solution; small data; COMPRESSIBLE FLUIDS; DIFFERENTIAL-EQUATIONS; WEAK SOLUTIONS; EXISTENCE; DOMAIN; FLOWS; PIPE;
D O I
10.1002/zamm.201300014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a system of partial differential equations describing the steady flow of a compressible heat conducting Newtonian fluid in a three-dimensional channel with inflow and outflow part. We show the existence of a strong solution provided the data are close to a constant, but nontrivial flow with sufficiently large dissipation in the energy equation. (C) 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:1035 / 1057
页数:23
相关论文
共 33 条
[1]  
Adams R.A., 1975, Sobolev Spaces. Adams. Pure and applied mathematics
[2]   ESTIMATES NEAR THE BOUNDARY FOR SOLUTIONS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS SATISFYING GENERAL BOUNDARY CONDITIONS .1. [J].
AGMON, S ;
DOUGLIS, A ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1959, 12 (04) :623-727
[3]   ESTIMATES NEAR BOUNDARY FOR SOLUTIONS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS SATISFYING GENERAL BOUNDARY CONDITIONS .2. [J].
AGMON, S ;
DOUGLIS, A ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1964, 17 (01) :35-&
[4]  
[Anonymous], 1994, An introduction to the mathematical theory of the Navier-Stokes equations
[6]   ORDINARY DIFFERENTIAL-EQUATIONS, TRANSPORT-THEORY AND SOBOLEV SPACES [J].
DIPERNA, RJ ;
LIONS, PL .
INVENTIONES MATHEMATICAE, 1989, 98 (03) :511-547
[7]  
Feireisl E., 2004, OXFORD LECT SERIES M, V26
[8]  
Jessle D., MATH MODELS IN PRESS
[9]   Existence of renormalized weak solutions to the steady equations describing compressible fluids in barotropic regime [J].
Jessle, Didier ;
Novotny, Antonin .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2013, 99 (03) :280-296
[10]   Existence of weak solutions to the three-dimensional steady compressible Navier-Stokes equations [J].
Jiang, Song ;
Zhou, Chunhui .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2011, 28 (04) :485-498