Blow up solutions for one class of system of Pekar-Choquard type nonlinear Schrodinger equation

被引:14
作者
Chen, Jianqing [1 ]
Guo, Boling
机构
[1] Fujian Normal Univ, Dept Math, Fuzhou 350007, Peoples R China
[2] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
关键词
Pekar-Choquard type system; blow up; strong instability; stationary solutions;
D O I
10.1016/j.amc.2006.07.089
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that firstly the existence of stationary solutions of the Pekar-Choquard system with the form i (rho) over right arrow (t) + Delta(rho) over right arrow + K((rho) over right arrow) -- vertical bar(rho) over right arrow vertical bar(p-2)(rho) over right arrow = 0, secondly the solutions of Cauchy problem of (PCs) with initial data close to the stationary solution (in a suitable sense) must blow up at finite time; finally the standing wave relating to the stationary solution of (PCs) is strongly unstable in the sense of Definition 4.2. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:83 / 92
页数:10
相关论文
共 12 条
  • [1] BERESTYCKI H, 1981, CR ACAD SCI I-MATH, V293, P489
  • [2] Cazenave T., 1989, TEXTOS METODOS MATEM, V22
  • [3] DEB BM, 1982, PHYS REP, V92
  • [4] EFINGER HJ, 1984, IL NUOVO CIMENTO B, V80
  • [5] BLOWING UP OF SOLUTIONS TO CAUCHY-PROBLEM FOR NONLINEAR SCHRODINGER EQUATIONS
    GLASSEY, RT
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (09) : 1794 - 1797
  • [6] Gross EP., 1966, Physics of Many-Particle Systems, P231
  • [7] Guo D., 1989, J. Appl. Math. Simul, V2, P1
  • [8] LIONS PL, 1984, ANN I H POINCARE-AN, V1, P109
  • [9] REED M, 2003, FOURIER ANAL SELF AD, V2
  • [10] INSTABILITY OF NONLINEAR BOUND-STATES
    SHATAH, J
    STRAUSS, W
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1985, 100 (02) : 173 - 190