Nonlinear control design for linear differential inclusions via convex hull of quadratics

被引:71
作者
Hu, Tingshu [1 ]
机构
[1] Univ Massachusetts, Dept Elect & Comp Engn, Lowell, MA 01854 USA
基金
美国国家科学基金会;
关键词
linear differential inclusion; nonlinear feedback; Lyapunov functions; robust stability; robust performance;
D O I
10.1016/j.automatica.2006.10.015
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a nonlinear control design method for robust stabilization and robust performance of linear differential inclusions (LDIs). A recently introduced non-quadratic Lyapunov function, the convex hull of quadratics, will be used for the construction of nonlinear state feedback laws. Design objectives include stabilization with maximal convergence rate, disturbance rejection with minimal reachable set and least L-2 gain. Conditions for stabilization and performances are derived in terms of bilinear matrix inequalities (BMIs), which cover the existing linear matrix inequality (LMI) conditions as special cases. Numerical examples demonstrate the advantages of using nonlinear feedback control over linear feedback control for LDIs. It is also observed through numerical computation that nonlinear control strategies help to reduce control effort substantially. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:685 / 692
页数:8
相关论文
共 20 条
[1]   NONQUADRATIC LYAPUNOV FUNCTIONS FOR ROBUST-CONTROL [J].
BLANCHINI, F .
AUTOMATICA, 1995, 31 (03) :451-461
[2]   Robust state feedback control of LTV systems: Nonlinear is better than linear [J].
Blanchini, F ;
Megretski, A .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (04) :802-807
[3]  
Boyd S., 1994, SIAM STUDIES APPL MA
[4]   Homogeneous Lyapunov functions for systems with structured uncertainties [J].
Chesi, G ;
Garulli, A ;
Tesi, A ;
Vicino, A .
AUTOMATICA, 2003, 39 (06) :1027-1035
[5]   Conjugate convex Lyapunov functions for dual linear differential inclusions [J].
Goebel, R ;
Teel, AR ;
Hu, TS ;
Lin, ZL .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2006, 51 (04) :661-666
[6]  
GOEBEL R, 2005, CURRENT TRENDS NONLI
[7]  
Hassibi A., 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251), P1385, DOI 10.1109/ACC.1999.783595
[8]   Stability and performance for saturated systems via quadratic and nonquadratic Lyapunov functions [J].
Hu, Tingshu ;
Teel, Andrew R. ;
Zaccarian, Luca .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2006, 51 (11) :1770-1786
[9]   Absolute stability analysis of discrete-time systems with composite quadratic Lyapunov functions [J].
Hu, TS ;
Lin, ZL .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (06) :781-797
[10]   Conjugate Lyapunov functions for saturated linear systems [J].
Hu, TS ;
Goebel, R ;
Teel, AR ;
Lin, ZL .
AUTOMATICA, 2005, 41 (11) :1949-1956