Accessory parameters in conformal mapping: exploiting the isomonodromic tau function for Painleve VI

被引:16
作者
Anselmo, Tiago [1 ,2 ]
Nelson, Rhodri [2 ]
da Cunha, Bruno Carneiro [1 ]
Crowdy, Darren G. [2 ]
机构
[1] Univ Fed Pernambuco, Dept Fis, BR-50670901 Recife, PE, Brazil
[2] Imperial Coll London, Dept Math, 180 Queens Gate, London SW7 2AZ, England
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2018年 / 474卷 / 2216期
基金
英国工程与自然科学研究理事会;
关键词
conformal mapping; accessory parameters; isomonodromy; tau function; EQUATIONS;
D O I
10.1098/rspa.2018.0080
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We present a novel method to solve the accessory parameter problem arising in constructing conformal maps from a canonical simply connected planar region to the interior of a circular arc quadrilateral. The Schwarz-Christoffel accessory parameter problem, relevant when all sides have zero curvature, is also captured within our approach. The method exploits the isomonodromic tau function associated with the Painleve VI equation. Recently, these tau functions have been shown to be related to certain correlation functions in conformal field theory and asymptotic expansions have been given in terms of tuples of the Young diagrams. After showing how to extract the monodromy data associated with the target domain, we show how a numerical approach based on the known asymptotic expansions can be used to solve the conformal mapping accessory parameter problem. The viability of this new method is demonstrated by explicit examples and we discuss its extension to circular arc polygons with more than four sides.
引用
收藏
页数:20
相关论文
共 41 条
[1]  
Ablowitz M.J., 2003, Complex Variables
[2]   On Combinatorial Expansion of the Conformal Blocks Arising from AGT Conjecture [J].
Alba, Vasyl A. ;
Fateev, Vladimir A. ;
Litvinov, Alexey V. ;
Tarnopolskiy, Grigory M. .
LETTERS IN MATHEMATICAL PHYSICS, 2011, 98 (01) :33-64
[3]   Liouville Correlation Functions from Four-Dimensional Gauge Theories [J].
Alday, Luis F. ;
Gaiotto, Davide ;
Tachikawa, Yuji .
LETTERS IN MATHEMATICAL PHYSICS, 2010, 91 (02) :167-197
[4]  
[Anonymous], 2000, Introduction to Fluid Mechanics
[5]  
Bershtein M, 2014, BILINEAR EQUATIONS P
[6]   CONFORMAL MAPPING OF CIRCULAR ARC POLYGONS [J].
BJORSTAD, P ;
GROSSE, E .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1987, 8 (01) :19-32
[7]   The Schwarz-Christoffel mapping to bounded multiply connected polygonal domains [J].
Crowdy, D .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2005, 461 (2061) :2653-2678
[8]   Conformal mappings to a doubly connected polycircular arc domain [J].
Crowdy, D. G. ;
Fokas, A. S. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2007, 463 (2084) :1885-1907
[9]   Uniform flow past a periodic array of cylinders [J].
Crowdy, Darren G. .
EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2016, 56 :120-129
[10]  
Crowdy DG, 2011, COMPUT METH FUNCT TH, V11, P685