Atmospheric corrosion assessed from corrosion images using fuzzy Kolmogorov-Sinai entropy

被引:22
作者
Xia, Da-Hai [1 ,5 ]
Ma, Chao [1 ]
Song, Shizhe [1 ]
Jin, Weixian [4 ]
Behnamian, Yashar [3 ]
Fan, Hongqiang [2 ]
Wang, Jihui [1 ]
Gao, Zhiming [1 ]
Hu, Wenbin [1 ]
机构
[1] Tianjin Univ, Tianjin Key Lab Composite & Funct Mat, Sch Mat Sci & Engn, Tianjin 300354, Peoples R China
[2] Shanghai Univ, Lab Microstruct, Inst Mat, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China
[3] Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB T6G 2V4, Canada
[4] Cent Res Inst Iron & Steel, Zhoushan Marine Corros Inst, Zhoushan 316000, Zhejiang, Peoples R China
[5] Chinese Acad Sci, Inst Met Res, CAS Key Lab Nucl Mat & Safety Assessment, Shenyang 110016, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
carbon steel; weight loss; atmospheric corrosion; Kolmogorov-Sinai entropy; Image processing; TEXTURE ANALYSIS; ALUMINUM-ALLOYS; CLASSIFICATION; EXPOSURE; COATINGS; DAMAGE; MODEL; FILM;
D O I
10.1016/j.corsci.2017.02.015
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Fuzzy Kolmogorov-Sinai (K-S) entropy was used to characterize the irregularity of the spatial information distribution in a corrosion image. The fuzzy K-S entropy was measured for horizontal and vertical orientations of corrosion images of steel samples exposed to a marine atmosphere over 191 days. The fuzzy K-S entropy for horizontal and vertical orientations decreased as the corrosion propagated. A relationship between the fuzzy K-S entropy and the weight loss in the steel sample can be presented with a linear mathematical expression. Fuzzy K-S entropy was found to be a semiquantitative and fast method to quantify atmospheric corrosion. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:251 / 256
页数:6
相关论文
共 33 条
  • [1] A FUNDAMENTAL LINK BETWEEN SYSTEM-THEORY AND STATISTICAL-MECHANICS
    ATMANSPACHER, H
    SCHEINGRABER, H
    [J]. FOUNDATIONS OF PHYSICS, 1987, 17 (09) : 939 - 963
  • [2] Determination of the stress intensity factors due to corrosion cracking in ferroconcrete by digital image processing reflection photoelasticity
    Chang, Che Way
    Lien, Hung Sheng
    Lin, Chen Hua
    [J]. CORROSION SCIENCE, 2010, 52 (05) : 1570 - 1575
  • [3] Texture analysis and classification with tree-structured wavelet transform
    Chang, Tianhorng
    Kuo, C. -C. Jay
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 1993, 2 (04) : 429 - 441
  • [4] Morphological analysis and classification of types of surface corrosion damage by digital image processing
    Choi, KY
    Kim, SS
    [J]. CORROSION SCIENCE, 2005, 47 (01) : 1 - 15
  • [5] An image processing method for morphology characterization and pitting corrosion evaluation
    Codaro, EN
    Nakazato, RZ
    Horovistiz, AL
    Ribeiro, LMF
    Ribeiro, RB
    Hein, LRO
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2002, 334 (1-2): : 298 - 306
  • [6] Long-term atmospheric corrosion of mild steel
    de la Fuente, D.
    Diaz, I.
    Simancas, J.
    Chico, B.
    Morcillo, M.
    [J]. CORROSION SCIENCE, 2011, 53 (02) : 604 - 617
  • [7] A statistical model for magnitudes and angles of wavelet frame coefficients and its application to texture retrieval
    de Ves, Esther
    Acevedo, Daniel
    Ruedin, Ana
    Benavent, Xaro
    [J]. PATTERN RECOGNITION, 2014, 47 (09) : 2925 - 2939
  • [8] Texture digital analysis for corrosion monitoring
    Feliciano, Flavio Felix
    Leta, Fabiana Rodrigues
    Mainier, Fernando Benedicto
    [J]. CORROSION SCIENCE, 2015, 93 : 138 - 147
  • [9] An innovative image-processing model for rust detection using Perlin Noise to simulate oxide textures
    Gamarra Acosta, Margarita R.
    Velez Diaz, Juan C.
    Schettini Castro, Norelli
    [J]. CORROSION SCIENCE, 2014, 88 : 141 - 151
  • [10] Copper patina corrosion evaluation by means of fractal geometry using electrochemical noise (EN) and image analysis
    Garcia-Ochoa, E.
    Corvo, F.
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (06) : 826 - 830