Thermal drag in electronic conductors

被引:27
作者
Bhandari, Bibek [1 ,2 ]
Chiriaco, Giuliano [3 ]
Erdman, Paolo A. [1 ,2 ]
Fazio, Rosario [1 ,2 ,4 ]
Taddei, Fabio [5 ,6 ]
机构
[1] CNR, Scuola Normale Super, NEST, I-56127 Pisa, Italy
[2] CNR, Ist Nanosci, I-56127 Pisa, Italy
[3] Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA
[4] Abdus Salaam Int Ctr Theoret Phys, Str Costiera 11, I-34151 Trieste, Italy
[5] CNR, Ist Nanosci, NEST, I-56127 Pisa, Italy
[6] Scuola Normale Super Pisa, I-56127 Pisa, Italy
关键词
COULOMB DRAG; ENERGY; HEAT;
D O I
10.1103/PhysRevB.98.035415
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the electronic thermal drag in two different Coulomb-coupled systems, the first one composed of two Coulomb-blockaded metallic islands and the second one consisting of two parallel quantum wires. The two conductors of each system are electrically isolated and placed in the two circuits (the drive and the drag) of a four-electrode setup. The systems are biased, either by a temperature Delta T or a voltage V difference, on the drive circuit, while no biases are present on the drag circuit. In the case of a pair of metallic islands we use a master equation approach to determine the general properties of the dragged heat current I-drag((h)), accounting also for cotunneling contributions and the presence of large biases. Analytic results are obtained in the sequential tunneling regime for small biases, finding, in particular, that I-drag((h)) is quadratic in Delta T or V and nonmonotonic as a function of the interisland coupling. Finally, by replacing one of the electrodes in the drag circuit with a superconductor, we find that heat can be extracted from the other normal electrode. In the case of the two interacting quantum wires, using the Luttinger liquid theory and the bosonization technique, we derive an analytic expression for the thermal transresistivity rho((h))(12), in the weak-coupling limit and at low temperatures, rho((h))(12) turns out to be proportional to the electrical transresistivity, in such a way that their ratio (a kind of Wiedemann-Franz law) is proportional to T-3. We find that rho((h))(12) is proportional to T for low temperatures and decreases like 1/T for intermediate temperatures or like 1/T-3 for high temperatures. We complete our analyses by performing numerical simulations that confirm the above results and allow us to access the strong-coupling regime.
引用
收藏
页数:19
相关论文
共 47 条
  • [1] Fundamental aspects of steady-state conversion of heat to work at the nanoscale
    Benenti, Giuliano
    Casati, Giulio
    Saito, Keiji
    Whitney, Robert S.
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2017, 694 : 1 - 124
  • [2] Measurement Back-Action in Stacked Graphene Quantum Dots
    Bischoff, D.
    Eich, M.
    Zilberberg, O.
    Roessler, C.
    Ihn, T.
    Ensslin, K.
    [J]. NANO LETTERS, 2015, 15 (09) : 6003 - 6008
  • [3] Powerful Coulomb-drag thermoelectric engine
    Dare, A. -M.
    Lombardo, P.
    [J]. PHYSICAL REVIEW B, 2017, 96 (11)
  • [4] Experimental observation of Coulomb drag in parallel ballistic quantum wires
    Debray, P
    Vasilopoulos, P
    Raichev, O
    Perrin, R
    Rahman, M
    Mitchel, WC
    [J]. PHYSICA E, 2000, 6 (1-4): : 694 - 697
  • [5] Experimental studies of Coulomb drag between ballistic quantum wires
    Debray, P
    Zverev, V
    Raichev, O
    Klesse, R
    Vasilopoulos, P
    Newrock, RS
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2001, 13 (14) : 3389 - 3402
  • [6] Thermal Conductance of a Single-Electron Transistor
    Dutta, B.
    Peltonen, J. T.
    Antonenko, D. S.
    Meschke, M.
    Skvortsov, M. A.
    Kubala, B.
    Koenig, J.
    Winkelmann, C. B.
    Courtois, H.
    Pekola, J. P.
    [J]. PHYSICAL REVIEW LETTERS, 2017, 119 (07)
  • [7] Erdman P. A., ARXIV180501721
  • [8] Coulomb drag of Luttinger liquids and quantum Hall edges
    Flensberg, K
    [J]. PHYSICAL REVIEW LETTERS, 1998, 81 (01) : 184 - 187
  • [9] Giamarchi T., 2004, ONE DIMENSIONAL QUAN
  • [10] Voltage Fluctuation to Current Converter with Coulomb-Coupled Quantum Dots
    Hartmann, F.
    Pfeffer, P.
    Hoeffling, S.
    Kamp, M.
    Worschech, L.
    [J]. PHYSICAL REVIEW LETTERS, 2015, 114 (14)