Multi-Sensor Fusion for Aerial Robots in Industrial GNSS-Denied Environments

被引:11
作者
Carrasco, Paloma [1 ]
Cuesta, Francisco [1 ]
Caballero, Rafael [1 ]
Perez-Grau, Francisco J. [1 ]
Viguria, Antidio [1 ]
机构
[1] CATEC Adv Ctr Aerosp Technol, Calle Wilbur y Orville Wright 19, Seville 41309, Spain
来源
APPLIED SCIENCES-BASEL | 2021年 / 11卷 / 09期
基金
欧盟地平线“2020”;
关键词
Monte Carlo localization; particle filter; UAV; 3D LIDAR; ultra-wide band; LOCALIZATION; ROBUST; LIDAR;
D O I
10.3390/app11093921
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The use of unmanned aerial robots has increased exponentially in recent years, and the relevance of industrial applications in environments with degraded satellite signals is rising. This article presents a solution for the 3D localization of aerial robots in such environments. In order to truly use these versatile platforms for added-value cases in these scenarios, a high level of reliability is required. Hence, the proposed solution is based on a probabilistic approach that makes use of a 3D laser scanner, radio sensors, a previously built map of the environment and input odometry, to obtain pose estimations that are computed onboard the aerial platform. Experimental results show the feasibility of the approach in terms of accuracy, robustness and computational efficiency.
引用
收藏
页数:14
相关论文
共 26 条
  • [1] Bhosle S., 2018, PROCEDIA MANUF, V20, P233, DOI [DOI 10.1016/J.PROMFG.2018.02, 10.1016/j.promfg.2018.02.034, DOI 10.1016/J.PROMFG.2018.02.034]
  • [2] 3-D Mapping With an RGB-D Camera
    Endres, Felix
    Hess, Juergen
    Sturm, Juergen
    Cremers, Daniel
    Burgard, Wolfram
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2014, 30 (01) : 177 - 187
  • [3] Robust Range-Only SLAM for Unmanned Aerial Systems
    Fabresse, Felipe R.
    Caballero, Fernando
    Maza, Ivan
    Ollero, Anibal
    [J]. JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2016, 84 (1-4) : 297 - 310
  • [4] SVO: Semidirect Visual Odometry for Monocular and Multicamera Systems
    Forster, Christian
    Zhang, Zichao
    Gassner, Michael
    Werlberger, Manuel
    Scaramuzza, Davide
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2017, 33 (02) : 249 - 265
  • [5] Mobile robot localization based on Ultra-Wide-Band ranging: A particle filter approach
    Gonzalez, J.
    Blanco, J. L.
    Galindo, C.
    Ortiz-de-Galisteo, A.
    Fernandez-Madrigal, J. A.
    Moreno, F. A.
    Martinez, J. L.
    [J]. ROBOTICS AND AUTONOMOUS SYSTEMS, 2009, 57 (05) : 496 - 507
  • [6] OctoMap: an efficient probabilistic 3D mapping framework based on octrees
    Hornung, Armin
    Wurm, Kai M.
    Bennewitz, Maren
    Stachniss, Cyrill
    Burgard, Wolfram
    [J]. AUTONOMOUS ROBOTS, 2013, 34 (03) : 189 - 206
  • [7] RTAB-Map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation
    Labbe, Mathieu
    Michaud, Francois
    [J]. JOURNAL OF FIELD ROBOTICS, 2019, 36 (02) : 416 - 446
  • [8] Keyframe-based visual-inertial odometry using nonlinear optimization
    Leutenegger, Stefan
    Lynen, Simon
    Bosse, Michael
    Siegwart, Roland
    Furgale, Paul
    [J]. INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2015, 34 (03) : 314 - 334
  • [9] Marder-Eppstein E, 2010, IEEE INT CONF ROBOT, P300, DOI 10.1109/ROBOT.2010.5509725
  • [10] Michael N, 2010, IEEE ROBOT AUTOM MAG, V17, P56, DOI 10.1109/MRA.2010.937855