ON THE NON-VANISHING PROPERTY FOR REAL ANALYTIC SOLUTIONS OF THE p-LAPLACE EQUATION

被引:8
作者
Tkachev, Vladimir G. [1 ]
机构
[1] Linkoping Univ, Dept Math, S-58183 Linkoping, Sweden
关键词
p-Laplace equation; non-associative algebras; idempotents; Peirce decompositions; p-harmonic functions; SINGULAR SOLUTIONS;
D O I
10.1090/proc/12912
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By using a non-associative algebra argument, we prove that u 0 is the only cubic homogeneous polynomial solution to the p-Laplace equation div vertical bar Du vertical bar(p-2)Du(x) = 0 in R-n for any n >= 2 and p is not an element of {1, 2}.
引用
收藏
页码:2375 / 2382
页数:8
相关论文
共 24 条
[1]  
[Anonymous], 1972, T MOSKOV MAT OBSC
[3]   ON PARTIAL DIFFERENTIAL EQUATION U2/XUXX + 2UXUYUXY + U2/YUYY = 0 [J].
ARONSSON, G .
ARKIV FOR MATEMATIK, 1968, 7 (05) :395-&
[4]  
Bordemann M., 1997, Acta Math. Univ. Com. LXVI, V2, P151
[5]  
Evans Lawrence C., 1993, ELECT J DIFFERENTIAL
[7]   A CRITERION OF NONVANISHING DIFFERENTIAL OF A SMOOTH MAP [J].
FUGLEDE, B .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1982, 14 (MAR) :98-102
[8]   On the Structure of ∞-Harmonic Maps [J].
Katzourakis, Nikos .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2014, 39 (11) :2091-2124
[9]   SINGULAR SOLUTIONS OF THE P-LAPLACE EQUATION [J].
KICHENASSAMY, S ;
VERON, L .
MATHEMATISCHE ANNALEN, 1986, 275 (04) :599-615
[10]  
Knus Max-Albert, 1998, AM MATH SOC C PUBLIC, V44, DOI 10.1090/coll/044. 1020