Structural and mechanical properties of the proliferative zone of the developing murine growth plate cartilage assessed by atomic force microscopy

被引:92
作者
Prein, Carina [1 ,2 ,3 ]
Warmbold, Niklas [1 ]
Farkas, Zsuzsanna [2 ]
Schieker, Matthias [1 ,2 ]
Aszodi, Attila [1 ,2 ]
Clausen-Schaumann, Hauke [1 ,3 ]
机构
[1] Munich Univ Appl Sci, Ctr Appl Tissue Engn & Regenerat Med CANTER, Munich, Germany
[2] Univ Munich, Dept Surg, Ctr Clin, Lab Expt Surg & Regenerat Med ExperiMed, Munich, Germany
[3] Univ Munich, Ctr NanoSci CeNS, Munich, Germany
关键词
Growth plate; Proliferative zone; Atomic force microscopy; AFM; Biomechanics; Elasticity; CHONDROCYTE PERICELLULAR MATRIX; LONGITUDINAL BONE-GROWTH; ARTICULAR-CARTILAGE; COLLAGEN-II; MICROMECHANICAL PROPERTIES; CELL POLARITY; IN-SITU; ELASTICITY; ORGANIZATION; OSTEOBLASTS;
D O I
10.1016/j.matbio.2015.10.001
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The growth plate (GP) is a dynamic tissue driving bone elongation through chondrocyte proliferation, hypertrophy and matrix production. The extracellular matrix (ECM) is the major determinant of GP biomechanical properties and assumed to play a pivotal role for chondrocyte geometry and arrangement, thereby guiding proper growth plate morphogenesis and bone elongation. To elucidate the relationship between morphology and biomechanics during cartilage morphogenesis, we have investigated age-dependent structural and elastic properties of the proliferative zone of the murine GP by atomic force microscopy (AFM) from the embryonic stage to adulthood. We observed a progressive cell flattening and arrangement into columns from embryonic day 13.5 until postnatal week 2, correlating with an increasing collagen density and ECM stiffness, followed by a nearly constant cell shape, collagen density and ECM stiffness from week 2 to 4 months. At all ages, we found marked differences in the density and organization of the collagen network between the intracolumnar matrix, and the intercolumnar matrix, associated with a roughly two-fold higher stiffness of the intracolumnar matrix compared to the intercolumnar matrix. This difference in local ECM stiffness may force the cells to arrange in a columnar structure upon cell division and drive bone elongation during embryonic and juvenile development. (C) 2015 The Authors. Published by Elsevier B.V.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 78 条
[1]   Interactions between Sox9 and β-catenin control chondrocyte differentiation [J].
Akiyama, H ;
Lyons, JP ;
Mori-Akiyama, Y ;
Yang, XH ;
Zhang, R ;
Zhang, ZP ;
Deng, JM ;
Taketo, MM ;
Nakamura, T ;
Behringer, RR ;
McCrea, PD ;
de Crombrugghe, B .
GENES & DEVELOPMENT, 2004, 18 (09) :1072-1087
[2]   TENSILE PROPERTIES OF HUMAN KNEE-JOINT CARTILAGE .1. INFLUENCE OF IONIC CONDITIONS, WEIGHT BEARING, AND FIBRILLATION ON THE TENSILE MODULUS [J].
AKIZUKI, S ;
MOW, VC ;
MULLER, F ;
PITA, JC ;
HOWELL, DS ;
MANICOURT, DH .
JOURNAL OF ORTHOPAEDIC RESEARCH, 1986, 4 (04) :379-392
[3]   The biomechanical role of the chondrocyte pericellular matrix in articular cartilage [J].
Alexopoulos, LG ;
Setton, LA ;
Guilak, F .
ACTA BIOMATERIALIA, 2005, 1 (03) :317-325
[4]   Alterations in the mechanical properties of the human chondrocyte pericellular matrix with osteoarthritis [J].
Alexopoulos, LG ;
Haider, MA ;
Vail, TP ;
Guilak, F .
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2003, 125 (03) :323-333
[5]   Heterogeneous nanostructural and nanoelastic properties of pericellular and interterritorial matrices of chondrocytes by atomic force microscopy [J].
Allen, DM ;
Mao, JJ .
JOURNAL OF STRUCTURAL BIOLOGY, 2004, 145 (03) :196-204
[6]   ECM stiffness primes the TGFβ pathway to promote chondrocyte differentiation [J].
Allen, Jessica L. ;
Cooke, Margaret E. ;
Alliston, Tamara .
MOLECULAR BIOLOGY OF THE CELL, 2012, 23 (18) :3731-3742
[7]   Collagen II is essential for the removal of the notochord and the formation of intervertebral discs [J].
Aszódi, A ;
Chan, D ;
Hunziker, E ;
Bateman, JF ;
Fässler, R .
JOURNAL OF CELL BIOLOGY, 1998, 143 (05) :1399-1412
[8]   β1 integrins regulate chondrocyte rotation, G1 progression, and cytokinesis [J].
Aszodi, A ;
Hunziker, EB ;
Brakebusch, C ;
Fässler, R .
GENES & DEVELOPMENT, 2003, 17 (19) :2465-2479
[9]   The biology of the growth plate [J].
Ballock, RT ;
O'Keefe, RJ .
JOURNAL OF BONE AND JOINT SURGERY-AMERICAN VOLUME, 2003, 85A (04) :715-726
[10]   The domain of hypertrophic chondrocytes in growth plates growing at different rates [J].
Breur, GJ ;
Lapierre, MD ;
Kazmierczak, K ;
Stechuchak, KM ;
McCabe, GP .
CALCIFIED TISSUE INTERNATIONAL, 1997, 61 (05) :418-425