A criterion for the existence of a flat connection on a parabolic vector bundle

被引:16
作者
Biswas, I [1 ]
机构
[1] Tata Inst Fundamental Res, Sch Math, Bombay 400005, Maharashtra, India
关键词
D O I
10.1515/advg.2002.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define holomorphic connection on a parabolic vector bundle over a Riemann surface and prove that a parabolic vector bundle admits a holomorphic connection if and only if each direct summand of it is of parabolic degree zero. This is a generalization to the parabolic context of a well-known result of Weil which says that a holomorphic vector bundle on a Riemann surface admits a holomorphic connection if and only if every direct summand of it is of degree zero.
引用
收藏
页码:231 / 241
页数:11
相关论文
共 8 条
[1]  
Atiyah M. F., 1957, T AM MATH SOC, V85, P181
[2]   Parabolic bundles as orbifold bundles [J].
Biswas, I .
DUKE MATHEMATICAL JOURNAL, 1997, 88 (02) :305-325
[3]   Parabolic ample bundles [J].
Biswas, I .
MATHEMATISCHE ANNALEN, 1997, 307 (03) :511-529
[4]  
Deligne Pierre, 1970, EQUATIONS DIFFERENTI
[5]  
DOLGACHEV IV, 1999, RECENT PROGR ALGEBRA, P65
[6]  
KAWAMATA Y, 1985, ALGEBRAIC GEOMETRY S, P283
[7]   MODULI OF VECTOR-BUNDLES ON CURVES WITH PARABOLIC STRUCTURES [J].
MEHTA, VB ;
SESHADRI, CS .
MATHEMATISCHE ANNALEN, 1980, 248 (03) :205-239
[8]  
Weil A., 1938, J MATH PURE APPL, V17, P47