REVERSES OF THE TRIANGLE INEQUALITY IN INNER PRODUCT SPACES

被引:0
作者
Zhang, Lingling [1 ]
Ohwada, Tomoyoshi [2 ]
Cho, Muneo [3 ]
机构
[1] Taiyuan Univ Technol, Dept Math, Taiyuan 030024, Peoples R China
[2] Shizuoka Univ, Fac Educ, Shizuoka 4228529, Japan
[3] Kanagawa Univ, Fac Sci, Dept Math, Hiratsuka, Kanagawa 2591293, Japan
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2014年 / 17卷 / 02期
基金
美国国家科学基金会; 日本学术振兴会;
关键词
triangle inequality; inner product space; strictly convex Banach space;
D O I
10.7153/mia-17-41
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that if x(1), ... , x(n) are vectors in a normed linear space (X, vertical bar vertical bar center dot vertical bar vertical bar) and s1, ... , s(n) belong to the interval [0, infinity), then f(n)(s(1), ... , s(n)) = Sigma(n, j = 1) vertical bar vertical bar s(j)x(j)vertical bar vertical bar - vertical bar vertical bar Sigma(n, j = 1) s(j)x(j)vertical bar vertical bar is a non-negative valued continuous function such that f(n)(s(1), ... , s(n)) <= f(n)(t(1), ... , t(n)) for all s(1), ... , s(n) and t(1), ... , t(n) in [0,infinity) with s(j) <= t(j) (1 <= j <= n). By using it, we prove several versions of reverse triangle inequality in inner product spaces and discuss equality attainedness of norm inequalities in strictly convex Banach spaces.
引用
收藏
页码:539 / 555
页数:17
相关论文
共 14 条
[1]  
[Anonymous], 2003, J INEQUAL PURE APPL
[2]  
ANSARI A. H., 2005, INT J MATH MATH SCI, P2883
[3]   Characterization of a generalized triangle inequality in normed spaces [J].
Dadipour, Farzad ;
Moslehian, Mohammad Sal ;
Rassias, John M. ;
Takahasi, Sin-Ei .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (02) :735-741
[4]  
Dragomir S.S., 2004, AUST J MATH ANAL APP, V1, P1
[5]  
DRAGOMIR S. S., 2005, J. Inequal. in Pure and Appl. Math., V6, P1
[6]  
Fujii M, 2010, MATH INEQUAL APPL, V13, P743
[7]   Refinements of generalized triangle inequalities [J].
Hsu, Chih-Yung ;
Shaw, Sen-Yen ;
Wong, Han-Jin .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 344 (01) :17-31
[8]  
Kato M, 2007, MATH INEQUAL APPL, V10, P451
[9]  
Khosravi M., 2009, J INEQUAL PURE APPL, V10
[10]   SOME REMARKS ON THE TRIANGLE INEQUALITY FOR NORMS [J].
Maligranda, Lech .
BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2008, 2 (02) :31-41