Intravoxel incoherent motion modeling in the kidneys: Comparison of mono-, bi-, and triexponential fit

被引:53
作者
van Baalen, Sophie [1 ]
Leemans, Alexander [2 ]
Dik, Pieter [3 ]
Lilien, Marc R. [4 ]
ten Haken, Bennie [1 ]
Froeling, Martijn [5 ]
机构
[1] Univ Twente, MIRA Inst Biomed Technol & Tech Med, Enschede, Netherlands
[2] Univ Med Ctr Utrecht, Image Sci Inst, Utrecht, Netherlands
[3] UMC Utrecht, Wilhelmina Childrens Hosp, Dept Pediat Urol, Utrecht, Netherlands
[4] UMC Utrecht, Wilhelmina Childrens Hosp, Dept Pediat Nephrol, Utrecht, Netherlands
[5] Univ Med Ctr Utrecht, Dept Radiol, Utrecht, Netherlands
关键词
kidneys; diffusion tensor imaging; DTI; IVIM; tractography; diffusion MRI; DIFFUSION-TENSOR MRI; IMAGE REGISTRATION; WEIGHTED MRI; IN-DIFFUSION; RENAL TUMORS; TRACTOGRAPHY; ARCHITECTURE; PERFUSION; DTI;
D O I
10.1002/jmri.25519
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
PurposeTo evaluate if a three-component model correctly describes the diffusion signal in the kidney and whether it can provide complementary anatomical or physiological information about the underlying tissue. Materials and MethodsTen healthy volunteers were examined at 3T, with T-2-weighted imaging, diffusion tensor imaging (DTI), and intravoxel incoherent motion (IVIM). Diffusion tensor parameters (mean diffusivity [MD] and fractional anisotropy [FA]) were obtained by iterative weighted linear least squares fitting of the DTI data and mono-, bi-, and triexponential fit parameters (D-1, D-2, D-3, f(fast2), f(fast3), and f(interm)) using a nonlinear fit of the IVIM data. Average parameters were calculated for three regions of interest (ROIs) (cortex, medulla, and rest) and from fiber tractography. Goodness of fit was assessed with adjusted R-2 ( Radj2) and the Shapiro-Wilk test was used to test residuals for normality. Maps of diffusion parameters were also visually compared. ResultsFitting the diffusion signal was feasible for all models. The three-component model was best able to describe fast signal decay at low b values (b < 50), which was most apparent in Radj2 of the ROI containing high diffusion signals (ROIrest), which was 0.420.14, 0.610.11, 0.770.09, and 0.810.08 for DTI, one-, two-, and three-component models, respectively, and in visual comparison of the fitted and measured S-0. None of the models showed significant differences (P > 0.05) between the diffusion constant of the medulla and cortex, whereas the f(fast) component of the two and three-component models were significantly different (P < 0.001). ConclusionTriexponential fitting is feasible for the diffusion signal in the kidney, and provides additional information. Level of Evidence: 2 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;46:228-239
引用
收藏
页码:228 / 239
页数:12
相关论文
共 45 条
[31]   Diffusion tensor imaging of the human kidney: Does image registration permit scanning without respiratory triggering? [J].
Seif, Maryam ;
Mani, Laila Yasmin ;
Lu, Huanxiang ;
Boesch, Chris ;
Reyes, Mauricio ;
Vogt, Bruno ;
Vermathen, Peter .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2016, 44 (02) :327-334
[32]   Image Registration for Triggered and Non-Triggered DTI of the Human Kidney: Reduced Variability of Diffusion Parameter Estimation [J].
Seif, Maryam ;
Lu, Huanxiang ;
Boesch, Chris ;
Reyes, Mauricio ;
Vermathen, Peter .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2015, 41 (05) :1228-1235
[33]   Fast parallel image registration on CPU and GPU for diagnostic classification of Alzheimer's disease [J].
Shamonin, Denis P. ;
Bron, Esther E. ;
Lelieveldt, Boudewijn P. F. ;
Smits, Marion ;
Klein, Stefan ;
Staring, Marius .
FRONTIERS IN NEUROINFORMATICS, 2014, 7
[34]   Intravoxel Incoherent Motion and Diffusion-Tensor Imaging in Renal Tissue under Hydration and Furosemide Flow Challenges [J].
Sigmund, Eric E. ;
Vivier, Pierre-Hugues ;
Sui, Dabang ;
Lamparello, Nicole A. ;
Tantillo, Kristopher ;
Mikheev, Artem ;
Rusinek, Henry ;
Babb, James S. ;
Storey, Pippa ;
Lee, Vivian S. ;
Chandarana, Hersh .
RADIOLOGY, 2012, 263 (03) :758-769
[35]  
Stoeck CT, 2015, J CARDIOVASC MAGN R, V17, P1
[36]   REKINDLE: Robust Extraction of Kurtosis INDices with Linear Estimation [J].
Tax, Chantal M. W. ;
Otte, Willem M. ;
Viergever, Max A. ;
Dijkhuizen, Rick M. ;
Leemans, Alexander .
MAGNETIC RESONANCE IN MEDICINE, 2015, 73 (02) :794-808
[37]   Triexponential function analysis of diffusion-weighted MRI for diagnosing prostate cancer [J].
Ueda, Yu ;
Takahashi, Satoru ;
Ohno, Naoki ;
Kyotani, Katsusuke ;
Kawamitu, Hideaki ;
Miyati, Tosiaki ;
Aoyama, Nobukazu ;
Ueno, Yoshiko ;
Kitajima, Kazuhiro ;
Kawakami, Fumi ;
Okuaki, Tomoyuki ;
Tsukamoto, Ryuko ;
Yanagita, Emmy ;
Sugimura, Kazuro .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2016, 43 (01) :138-148
[38]  
VansBaalen S, 2014, P 22 ANN M ISMRM MIL, V22
[39]   Weighted linear least squares estimation of diffusion MRI parameters: Strengths, limitations, and pitfalls [J].
Veraart, Jelle ;
Sijbers, Jan ;
Sunaert, Stefan ;
Leemans, Alexander ;
Jeurissen, Ben .
NEUROIMAGE, 2013, 81 :335-346
[40]   The influence of complex white matter architecture on the mean diffusivity in diffusion tensor MRI of the human brain [J].
Vos, Sjoerd B. ;
Jones, Derek K. ;
Jeurissen, Ben ;
Viergever, Max A. ;
Leemans, Alexander .
NEUROIMAGE, 2012, 59 (03) :2208-2216