Fekete-Szego Inequality for Analytic and Biunivalent Functions Subordinate to Gegenbauer Polynomials

被引:56
作者
Amourah, Ala [1 ]
Frasin, Basem Aref [2 ]
Abdeljawad, Thabet [3 ,4 ,5 ]
机构
[1] Irbid Natl Univ, Fac Sci & Technol, Dept Math, Irbid, Jordan
[2] Al Bayt Univ, Fac Sci, Dept Math, Mafraq, Jordan
[3] Prince Sultan Univ, Dept Math & Gen Sci, Riyadh, Saudi Arabia
[4] China Med Univ, Dept Med Res, Taichung 40402, Taiwan
[5] Asia Univ, Dept Comp Sci & Informat Engn, Taichung, Taiwan
关键词
UNIVALENT; COEFFICIENT; SUBCLASSES;
D O I
10.1155/2021/5574673
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, a subclass of analytic and biunivalent functions by means of Gegenbauer polynomials is introduced. Certain coefficients bound for functions belonging to this subclass are obtained. Furthermore, the Fekete-Szego problem for this subclass is solved. A number of known or new results are shown to follow upon specializing the parameters involved in our main results.
引用
收藏
页数:7
相关论文
共 32 条
[1]   Subclasses of Bi-Univalent Functions Defined by Frasin Differential Operator [J].
Aldawish, Ibtisam ;
Al-Hawary, Tariq ;
Frasin, B. A. .
MATHEMATICS, 2020, 8 (05)
[2]  
Altinkaya S~, 2017, Asia Pac J Math, V4, P90
[3]  
Amourah A., AIP C P, V2096
[4]  
Amourah A., 2020, Palest J Math, V9, P187
[5]  
Amourah A., PALESTINE J MATH, P2021
[6]  
Amourah A., 2020, FEKETE SZEGO INEQUAL
[7]   Bi-Bazilevic functions of order θ [J].
Amourah, Ala ;
Frasin, B. A. ;
Murugusundaramoorthy, G. ;
Al-Hawary, Tariq .
AIMS MATHEMATICS, 2021, 6 (05) :4296-4305
[8]  
Amourah A, 2021, AFR MAT, V32, P1059, DOI 10.1007/s13370-021-00881-x
[9]  
Amourah Ala, 2019, General Letters in Mathematics, V7, P45, DOI DOI 10.31559/GLM2019.7.2.1
[10]  
Bateman H., 1953, HIGHER TRANSCENDENTA