SPARSE TENSOR DISCRETIZATION OF ELLIPTIC SPDES

被引:62
作者
Bieri, Marcel [1 ]
Andreev, Roman [1 ]
Schwab, Christoph [1 ]
机构
[1] ETH, Seminar Appl Math, Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
stochastic partial differential equations; uncertainty quantification; stochastic finite element methods; multilevel approximations; sparse tensor products; PARTIAL-DIFFERENTIAL-EQUATIONS; STOCHASTIC COLLOCATION METHOD; GENERALIZED POLYNOMIAL CHAOS; APPROXIMATIONS;
D O I
10.1137/090749256
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose and analyze sparse deterministic-stochastic tensor Galerkin finite element methods (sparse sGFEMs) for the numerical solution of elliptic partial differential equations (PDEs) with random coefficients in a physical domain D subset of R-d. In tensor product sGFEMs, the variational solution to the boundary value problem is approximated in tensor product finite element spaces V-Gamma circle times V-D, where V-Gamma and V-D denote suitable finite dimensional subspaces of the stochastic and deterministic function spaces, respectively. These approaches lead to sGFEM algorithms of complexity O(N Gamma ND), where N-Gamma = dim V-Gamma and N-D = dim V-D. In this work, we use hierarchic sequences V-1(Gamma) subset of V-2(Gamma) subset of ... and V-1(D) subset of ... of finite dimensional spaces to approximate the law of the random solution. The hierarchies of approximation spaces allow us to define sparse tensor product spaces V-l(Gamma) (circle times) over cap V-l(D), l = 1, 2, ... , yielding algorithms of O(N-Gamma log N-D + N-D log N-Gamma) work and memory. We estimate the convergence rate of sGFEM for algebraic decay of the input random field Karhunen-Loeve coefficients. We give an algorithm for an input adapted a-priori selection of deterministic and stochastic discretization spaces. The convergence rate in terms of the total number of degrees of freedom of the proposed method is superior to Monte Carlo approximations. Numerical examples illustrate the theoretical results and demonstrate superiority of the sparse tensor product discretization proposed here versus the full tensor product approach.
引用
收藏
页码:4281 / 4304
页数:24
相关论文
共 31 条
[1]  
Adler R.J., 1981, GEOMETRY RANDOM FIEL
[2]  
ANDREEV R, 2007, SEM APPL MATH ETH ZU
[3]  
[Anonymous], SEM APPL MATH ETH ZU
[4]  
[Anonymous], 2004, NUMER MATH SCI COMPU
[5]   Galerkin finite element approximations of stochastic elliptic partial differential equations [J].
Babuska, I ;
Tempone, R ;
Zouraris, GE .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (02) :800-825
[6]   A stochastic collocation method for elliptic partial differential equations with random input data [J].
Babuska, Ivo ;
Nobile, Fabio ;
Tempone, Raul .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (03) :1005-1034
[7]  
BAUER H, 2002, GRUYTER LEHRBUCH
[8]  
BIERI M, 2009, SEM APPL MATH ETH ZU
[9]  
Bieri M., 2009, Ph.D. Thesis
[10]  
BIERI M, 2009, SEM APPL MATH UNPUB