Universal localizations embedded in power-series rings

被引:5
作者
Ara, Pere [1 ]
Dicks, Warren [1 ]
机构
[1] Autonomous Univ Barcelona, Dept Math, E-08193 Barcelona, Spain
关键词
D O I
10.1515/FORUM.2007.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R be a ring, let F be a free group, and let X be a basis of F. Let epsilon : RF -> R denote the usual augmentation map for the group ring RF, let X partial derivative := {x - 1 vertical bar x epsilon X} subset of RF, let Sigma denote the set of matrices over RF that are sent to invertible matrices by epsilon, and let (RF)Sigma(-1) denote the universal localization of RF at Sigma. A classic result of Magnus and Fox gives an embedding of RF in the power-series ring R << X partial derivative >>. We show that if R is a commutative Bezout domain, then the division closure of the image of RF in R << X partial derivative >> is a universal localization of RF at Sigma. We also show that if R is a von Neumann regular ring or a commutative Bezout domain, then (RF)Sigma(-1) is stably flat as an RF-ring, in the sense of Neeman-Ranicki.
引用
收藏
页码:365 / 378
页数:14
相关论文
共 24 条
[1]  
AMNON N, NONCOMMUTATIVE LOCAL
[2]  
ANDREW R, BLANCHFIELD SEIFERT
[3]   ORDERING COPRODUCTS OF GROUPS AND SEMIGROUPS [J].
BERGMAN, GM .
JOURNAL OF ALGEBRA, 1990, 133 (02) :313-339
[4]   UNIVERSAL DERIVATIONS AND UNIVERSAL RING CONSTRUCTIONS [J].
BERGMAN, GM ;
DICKS, W .
PACIFIC JOURNAL OF MATHEMATICS, 1978, 79 (02) :293-337
[5]  
Cohn P., 1985, LMS MONOGRAPHS, V19
[6]  
Cohn P. M, 1973, C MATH SOC JANOS BOL, V6, P135
[7]  
COHN PM, 1976, J LOND MATH SOC, V13, P411
[8]  
DESMOND S, 2003, COMMUNICATION
[9]  
DESMOND S, 2006, LMS LECT NOTES, V330, P143
[10]   On a theorem of Ian!Hughes about division rings of fractions [J].
Dicks, W ;
Herbera, D ;
Sánchez, J .
COMMUNICATIONS IN ALGEBRA, 2004, 32 (03) :1127-1149