Fatigue crack initiation life prediction for aluminium alloy 7075 using crystal plasticity finite element simulations

被引:55
作者
Li, Ling [1 ]
Shen, Luming [1 ]
Proust, Gwenaelle [1 ]
机构
[1] Univ Sydney, Sch Civil Engn, Sydney, NSW 2006, Australia
基金
澳大利亚研究理事会;
关键词
Crystal plasticity; Fatigue; Crack initiation; Gibbs free energy change; Aluminium alloy 7075; CYCLE FATIGUE; NUCLEATION; MODEL; DISLOCATION; GROWTH; DEFORMATION; METALS; SLIP; NICKEL; ENERGY;
D O I
10.1016/j.mechmat.2014.11.004
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An experimentally-validated approach for predicting fatigue crack initiation life of polycrystalline metals is developed based on crystal plasticity finite element (CPFE) simulations. In this approach, the microstructure used in the simulations possesses statistically the same grain size and crystallographic orientations as those obtained from electron back-scatter diffraction experiments. A backstress model is incorporated into the CP constitutive model to describe the mechanical behaviour of aluminium alloy (AA) 7075 under cyclic loading. The key variables of the prediction model, the energy efficiency factor and plastic strain energy density, are calibrated using a fatigue test on a round-notched AA7075 specimen at room temperature. The proposed approach is then validated by using another fatigue test to predict 69.1-87.3% of the experimentally measured fatigue crack initiation life. The effects of the microstructure and texture on the energy efficiency factor and fatigue life prediction are quantitatively determined. It is shown that for a given range of energy efficiency factors a similar range of life prediction is obtained. Since the proposed approach considers the heterogeneity of the microstructure, it can well capture the grain scale deformation localisation and therefore improve the precision of fatigue life prediction. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:84 / 93
页数:10
相关论文
共 57 条
[1]   Homogenized constitutive and fatigue nucleation models from crystal plasticity FE simulations of Ti alloys, Part 2: Macroscopic probabilistic crack nucleation model [J].
Anahid, Masoud ;
Ghosh, Somnath .
INTERNATIONAL JOURNAL OF PLASTICITY, 2013, 48 :111-124
[2]   Crack path evaluation on HC and BCC microstructures under multiaxial cyclic loading [J].
Anes, V. ;
Reis, L. ;
Li, B. ;
Freitas, M. .
INTERNATIONAL JOURNAL OF FATIGUE, 2014, 58 :102-113
[3]  
[Anonymous], 2011, ABAQUS US MAN
[4]  
Armstrong P.J., 1966, A Mathematical Representation of the Multiaxial Bauschinger Effect
[5]   Experimental and crystal plasticity studies of deformation and crack nucleation in a titanium alloy [J].
Bache, M. R. ;
Dunne, F. P. E. ;
Madrigal, C. .
JOURNAL OF STRAIN ANALYSIS FOR ENGINEERING DESIGN, 2010, 45 (05) :391-399
[6]   Low cycle fatigue properties of an extruded AZ31 magnesium alloy [J].
Begum, S. ;
Chen, D. L. ;
Xu, S. ;
Luo, Alan A. .
INTERNATIONAL JOURNAL OF FATIGUE, 2009, 31 (04) :726-735
[7]   Polycrystal orientation distribution effects on microslip in high cycle fatigue [J].
Bennett, VP ;
McDowell, DL .
INTERNATIONAL JOURNAL OF FATIGUE, 2003, 25 (01) :27-39
[8]   A geometric approach to modeling microstructurally small fatigue crack formation: I. Probabilistic simulation of constituent particle cracking in AA 7075-T651 [J].
Bozek, J. E. ;
Hochhalter, J. D. ;
Veilleux, M. G. ;
Liu, M. ;
Heber, G. ;
Sintay, S. D. ;
Rollett, A. D. ;
Littlewood, D. J. ;
Maniatty, A. M. ;
Weiland, H. ;
Christ, R. J., Jr. ;
Payne, J. ;
Welsh, G. ;
Harlow, D. G. ;
Wawrzynek, P. A. ;
Ingraffea, A. R. .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2008, 16 (06)
[9]   The backstress effect of evolving deformation boundaries in FCC polycrystals [J].
Brahme, Abhijit P. ;
Inal, Kaan ;
Mishra, Raja K. ;
Saimoto, S. .
INTERNATIONAL JOURNAL OF PLASTICITY, 2011, 27 (08) :1252-1266
[10]   Roles of microstructure in fatigue crack initiation [J].
Chan, Kwai S. .
INTERNATIONAL JOURNAL OF FATIGUE, 2010, 32 (09) :1428-1447